Parametric Prediction of the Temperature Field in a Heat Conduction Problem with a Moving Heat Source, Using Physics-Informed Neural Networks without Labelled Data

Authors

  • Benjamín A. Tourn Universidad Nacional de Rafaela, Centro de Investigación y Transferencia (CIT) & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Rafaela, Argentina.
  • Juan Carlos Álvarez Hostos Universidad Nacional de Rafaela, Centro de Investigación y Transferencia (CIT) & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Rafaela, Argentina & Universidad Nacional del Litoral, Facultad de Ingeniería Química, Departamento de Materiales. Santa Fe, Argentina.
  • Marcos U. Maillot Universidad Tecnológica Nacional, Facultad Regional General Pacheco, Departamento de Ingeniería Eléctrica. General Pacheco, Provincia de Buenos Aires, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i21.114

Keywords:

PINN, Deep Learning, heat conduction, parametric solution

Abstract

In this work, we propose use physics-informed neural networks (PINN) to parametrically solve the governing equations of a two-dimensional heat conduction problem with a moving heat source. We obtain general solutions not only as a function of the space-and-time independent variables but also to a geometric parameter that controls the intensity of the thermal source, named the characteristic radius. The results show a precise fit with respect to the reference solutions obtained by the finite element method. Nevertheless, we report and analyze some failure modes linked with the accomplishment of the boundary conditions and also to those found as the heat source becomes more intense.

References

Cai S., Wang Z., Wang S., Perdikaris P., y Karniadakis G.E. Physics-informed neural networks for heat transfer problems. Journal of Heat Transfer, 143(6):060801, 2021. https://doi.org/10.1115/1.4050542

Cuomo S., Di Cola V.S., Giampaolo F., Rozza G., Raissi M., y Piccialli F. Scientific machine learning through physics-informed neural networks: Where we are and what's next. Journal of Scientific Computing, 92(3):88, 2022. https://doi.org/10.1007/s10915-022-01939-z

De Ryck T., Bonnet F., Mishra S., y de Bézenac E. An operator preconditioning perspective on training in physics informed machine learning. arXiv preprint arXiv:2310.05801, 2023.

Deguchi S. y Asai M. Dynamic & norm-based weights to normalize imbalance in back-propagated gradients of physics-informed neural networks. Journal of Physics Communications, 7(7):075005, 2023. https://doi.org/10.1088/2399-6528/ace416

Goodfellow I., Bengio Y., y Courville A. Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org.

Hosseini E., Ghanbari P.G., Müller O., Molinaro R., y Mishra S. Single-track thermal analysis of laser powder bed fusion process: Parametric solution through physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering, 410:116019, 2023. https://doi.org/10.1016/j.cma.2023.116019

Karniadakis G.E., Kevrekidis I.G., Lu L., Perdikaris P., Wang S., y Yang L. Physics-informed machine learning. Nature Reviews Physics, 3(6):422-440, 2021. https://doi.org/10.1038/s42254-021-00314-5

Krishnapriyan A., Gholami A., Zhe S., Kirby R., y Mahoney M.W. Characterizing possible failure modes in physics-informed neural networks. Advances in neural information processing systems, 34:26548-26560, 2021.

McClenny L.D. y Braga-Neto U.M. Self-adaptive physics-informed neural networks. Journal of Computational Physics, 474:111722, 2023. https://doi.org/10.1016/j.jcp.2022.111722

Mishra S. y Molinaro R. Estimates on the generalization error of physics-informed neural networks for approximating pdes. IMA Journal of Numerical Analysis, 43(1):1-43, 2023. https://doi.org/10.1093/imanum/drab093

Nocedal J. y Wright S.J. Numerical optimization. Springer, 1999. https://doi.org/10.1007/b98874

Rabczuk T. y Bathe K.J. Machine Learning in Modeling and Simulation: Methods and Applications. Springer, 2023. Part of the book series: Computational Methods in Engineering & the Sciences (CMES). https://doi.org/10.1007/978-3-031-36644-4

Raissi M., Perdikaris P., y Karniadakis G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics, 378:686-707, 2019. https://doi.org/10.1016/j.jcp.2018.10.045

Wang S., Teng Y., y Perdikaris P. Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055-A3081, 2021. https://doi.org/10.1137/20M1318043

Xie J., Chai Z., Xu L., Ren X., Liu S., y Chen X. 3d temperature field prediction in direct energy deposition of metals using physics informed neural network. The International Journal of Advanced Manufacturing Technology, 119(5):3449-3468, 2022. https://doi.org/10.1007/s00170-021-08542-w

Zhu Q., Liu Z., y Yan J. Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Computational Mechanics, 67:619-635, 2021. https://doi.org/10.1007/s00466-020-01952-9

Álvarez Hostos J.C., Storti B., Tourn B.A., y Fachinotti V.D. Solving heat conduction problems with a moving heat source in arc welding processes via an overlapping nodes scheme based on the improved element-free galerkin method. International Journal of Heat and Mass Transfer, 192:122940, 2022. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122940

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024