Dopado de Fullerenos: Mejora en el Diseño de Nanoportadores para Aplicaciones Cardiovasculares

Autores/as

  • Breyner Ocampo Cárdenas Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca. Bahía Blanca, Argentina.
  • Andrés Diaz Compañy Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca. Bahía Blanca, Argentina. & Comisión de Investigaciones Científicas. La Plata, Argentina.
  • Gabriel Roman Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca. Bahía Blanca, Argentina. & Universidad Nacional del Sur, Departamento de Física, Instituto de Física del Sur & CONICET. Bahía Blanca, Argentina.
  • Sandra Simonetti Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca. Bahía Blanca, Argentina. & Universidad Nacional del Sur, Departamento de Física, Instituto de Física del Sur & CONICET. Bahía Blanca, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i22.118

Palabras clave:

DFT, Clopidogrel, adsorción, fullereno, nanotransportador

Resumen

En este trabajo, se investigan fullerenos C30 como potenciales nanocarriers para aplicaciones de liberación controlada del fármaco clopidogrel. Para llevar a cabo este estudio, se utilizó el método DFT (Density Functional Theory) con el software VASP (Vienna Ab initio Simulation Package) que permite realizar cálculos cuánticos ab initio. El análisis se centra en el estudio de la energía y las interacciones entre el clopidogrel y los fullerenos. Específicamente, los fullerenos dopados con boro y nitrógeno mostraron un comportamiento óptimo debido a su carga negativa. Se identificaron sitios activos del principio activo (API) del clopidogrel, destacándose aquel donde el átomo de azufre presenta una gran afinidad electrónica. El análisis proporciona información valiosa sobre las propiedades y las posibles aplicaciones de los fullerenos en la industria farmacéutica.

Citas

Amiraslanzadeh S. The effect of doping different heteroatoms on the interaction and adsorption abilities of fullerene. Heteroatom Chemistry, 27(1):23-31, 2016. https://doi.org/10.1002/hc.21284

Blanco E., Shen H., y Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature biotechnology, 33(9):941-951, 2015. https://doi.org/10.1038/nbt.3330

Cataldo F. y Da Ros T. Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes, volumen 1. Springer Science & Business Media, 2008. https://doi.org/10.1007/978-1-4020-6845-4_1

Choi Y.H. y Han H.K. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. Journal of pharmaceutical investigation, 48(1):43-60, 2018. https://doi.org/10.1007/s40005-017-0370-4

Dodero G., Grau E.N., Román G., Compañy A.D., y Simonetti S. Computational insights into si-doped (10, 0) SWCNT as polypill model for cardiovascular disease. Diamond and Related Materials, 124:108945, 2022. https://doi.org/10.1016/j.diamond.2022.108945

Dodero G., Román G., Grau E.N., Compañy A.D., y Simonetti S. Theoretical insight of hydrochlorothiazide and aspirin adsorption on potassium and phosphorus doped carbon nanostructure as polypill prototype. Diamond and Related Materials, 137:110084, 2023. https://doi.org/10.1016/j.diamond.2023.110084

Jiang X.L., Samant S., Lesko L.J., y Schmidt S. Clinical pharmacokinetics and pharmacodyna-mics of clopidogrel. Clinical pharmacokinetics, 54(2):147-166, 2015. https://doi.org/10.1007/s40262-014-0230-6

Khizar S., Alrushaid N., Khan F.A., Zine N., Jaffrezic-Renault N., Errachid A., y Elaissari A. Nanocarriers based novel and effective drug delivery system. International Journal of Pharmaceutics, 632:122570, 2023. https://doi.org/10.1016/j.ijpharm.2022.122570

Lipinski C.A., Lombardo F., Dominy B.W., y Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 64:4-17, 2012. https://doi.org/10.1016/j.addr.2012.09.019

Mitchell G.F., Hwang S.J., Vasan R.S., Larson M.G., Pencina M.J., Hamburg N.M., Vita J.A., Levy D., y Benjamin E.J. Arterial stiffness and cardiovascular events: the framingham heart study. Circulation, 121(4):505-511, 2010. https://doi.org/10.1161/CIRCULATIONAHA.109.886655

Soares S., Sousa J., Pais A., y Vitorino C. Nanomedicine: principles, properties, and regulatory issues. Frontiers in chemistry, 6:356901, 2018. https://doi.org/10.3389/fchem.2018.00360

Tandon H., Chakraborty T., y Suhag V. A brief review on importance of dft in drug design. Res.Med. Eng. Stud, 39:46, 2019.

Young D.C. Computational drug design: a guide for computational and medicinal chemists. John Wiley & Sons, 2009. https://doi.org/10.1002/9780470451854

Zhang L., Gu F., Chan J., Wang A., Langer R., y Farokhzad O. Nanoparticles in medicine: therapeutic applications and developments. Clinical pharmacology & therapeutics, 83(5):761- 769, 2008. https://doi.org/10.1038/sj.clpt.6100400

Descargas

Publicado

2024-11-08

Número

Sección

Artículos completos del congreso MECOM 2024