Swing: Integration of Experimental Physics and Numerical Methods
DOI:
https://doi.org/10.70567/mc.v41i23.120Keywords:
Experimental Physics, Numerical Methods, Pendulum, SmartphoneAbstract
This work proposes a teaching methodology for learning the movement of a swing (largescale pendulum) in a plaza environment, integrating the Experimental Physics 1 course with Numerical Methods. Experimental Physics 1 undergraduate students use a smartphone equipped with an app to record swing acceleration and angular velocity measurements. They then analyze the experimental data to determine whether the swing’s motion can be modeled as a simple pendulum. They are guided in the numerical resolution of the pendulum equation using two methods: Euler and Runge-Kutta of order four. Finally, the experimental data are compared with the numerical results to evaluate the capacity of the model to explain the observed dynamics. This integration between physics and mathematics improves the understanding of the movement of the swing, strengthens students’ programming and numerical analysis skills, and values collaboration between disciplines.
References
Di-Laccio J.L., Monetta A., Ramos J., y Bessone L. Métodos Numéricos en la Enseñanza de la Física. Mecánica Computacional, páginas 1527-1537, 2023.
Gallent-Torres C., Zapata-González A., y Ortego-Hernando J. El impacto de la inteligencia artificial generativa en educación superior: una mirada desde la ética y la integridad académica. RELIEVE - Revista Electrónica de Investigación y Evaluación Educativa, 29:1-20, 2023. https://doi.org/10.30827/relieve.v29i2.29134
Gil S. y Di-Laccio J. Smartphone una herramienta de laboratorio y aprendizaje laboratorios de bajo costo para el aprendizaje de las ciencias. American Journal of Physics Education, 11, 2017.
Malthe-Sørenssen A. Elementary Mechanics Using MATLAB: A Modern Course Combining Analytical and Numerical Techniques. Springer, Cham, Switzerland, 2015. ISBN 978-3-319-19586-5. https://doi.org/10.1007/978-3-319-19587-2
MathWorks. Matlab. 2015. Lanzamiento: 9 de septiembre de 2015.
Molina M.I. Simple linearizations of the simple pendulum for any amplitude. The Physics Teacher, 35(8):489, 1997. doi:10.1119/1.2344777. https://doi.org/10.1119/1.2344777
Moore H., Olguín V.C., y Nuño R.M. MATLAB para Ingenieros. 620.0013 M66 2007. Pearson Educación, 2007.
OpenAI. ChatGPT. https://www.openai.com/chatgpt, 2024. [Último acceso: 29 de agosto de 2024].
Resnick R., Halliday D., y Krane K.S. Física, Volumen 1. CECSA, Ciudad de México, México, 5ta edición, 2002. ISBN 978-968-514-175-2.
RWTH Aachen University. Phyphox experiments. 2024. Accedido: 29 de agosto de 2024.
Serway R.A. y Jewett J.W. Física para Ciencias e Ingeniería, Volumen 1. Cengage Learning, Ciudad de México, México, 7ma edición, 2008. ISBN 978-970-686-822-0.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.