Simulation of Turbulent Flow in Laboratory-Scale Chlorination Chambers to Estimate Hydraulic Efficiency Indicators and Incorporate Them into the Design Process

Authors

  • Camila Carrión Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Laboratorio de Hidráulica. Córdoba, Argentina.
  • Iván M. Ragessi Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Laboratorio de Hidráulica & Universidad Católica de Córdoba, Facultad de Ingeniería. Córdoba, Argentina.
  • Sofía L. Molina Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Laboratorio de Hidráulica. Córdoba, Argentina.
  • Andrés Rodríguez Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Laboratorio de Hidráulica & Instituto de Estudios Avanzados en Ingeniería y Tecnología, Universidad Nacional de Córdoba - CONICET. Córdoba, Argentina.
  • Gerardo Hillman Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Laboratorio de Hidráulica. Córdoba, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i24.126

Keywords:

CFD, Contact Tank, RTD, design optimization, residual chlorine Concentration

Abstract

The environmental balance depends on water and its sanitation, which includes the treatment of wastewater to remove contaminants and restore its quality before discharging it into receiving bodies. This work focuses on the tertiary treatment of the disinfection process, specifically controlled chlorination. Computational fluid dynamics and the OpenFOAM(R) library are used to simulate different designs of a contact chamber at a laboratory scale and evaluate hydraulic efficiency, considering issues such as the development of recirculation zones and short-circuiting, which affect the minimum contact time between chlorine and the effluent.

References

Angeloudis, A., Stoesser, T. and Falconer, R.A. (2014). Predicting the disinfection efficiency range in chlorine contact tanks through a CFD-based approach. Water Research, 60, pp.118-129. https://doi.org/10.1016/j.watres.2014.04.037

Angeloudis, A., Stoesser, T., Gualtieri, C. and Falconer, R.A. (2016). Contact Tank Design Impact on Process Performance. Environmental Modeling & Assessment, 21(5),pp.563-576. https://doi.org/10.1007/s10666-016-9502-x

Demirel, E. y MM. Aral. 2016a. Unified análisis of multi-chamber contact tanks and mixing efficiency based on vorticidad field I: Hydrodynamic analysis. https://doi.org/10.3390/w8110495

Demirel, E. y MM. Aral. 2016b. Unified análisis of multi-chamber contact tanks and mixing efficiency based on vorticidad field II: Transport analysis. https://doi.org/10.3390/w8110537

Demirel, E. and Aral, M.M. (2018). Performance of Efficiency Indexes for Contact Tanks. Journal of Environmental Engineering, 144(9), p.04018076. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001431

Metcalf & Eddy, INC (1995). Engineering Sewage Treatment, Disposal and reuse. Unitary chemical processes, 7, pp.343-403.

Molina, SL. y Ragessi, IM. 2022. Simulación del Flujo en Alternativas de Diseños de una Cámara de Cloración a Escala de Laboratorio para Evaluar la Mejora en los Indicadores de Eficiencia Hidráulica.

Di Buo, M. y Ragessi, IM. 2022. Optimización del Diseño de la Cámara de Contacto en "EDAR-Bajo Grande", Córdoba, Argentina.

Geuzaine, C. Remacle, J. F. 2009 Gmsh: A 3-D element mesh generator with built-in pre and post-processing facilities. International Journal for Numerical Methods in Engineering, Issue, 461-477. https://doi.org/10.1002/nme.2579

OpenCFD. (2005) (http://www.opencfd.co.uk/openfoam/)

Ragessi I. M., Marquez Damian S., Garcia C. M., Pozzi Piacenza C., Romagnoli M., Hillman G. 2013. Validación de un modelo numérico para la simulación del flujo turbulento en una planta de tratamiento de agua potable. Mecánica Computacional Vol XXXII, págs. 3741-3761.

Raggesi, Iván Matías. (2017). Caracterización Hidrodinámica Detallada del Flujo en Estructuras Hidráulicas de Plantas de Tratamiento de Aguas y Aguas Residuales para Evaluar su Funcionamiento.

USEPA. 1991, Guidance manual for compliance with the filtration and disinfection requirements for public water system using surface water.

Published

2024-11-08