Simulation of Turbulent Flow in Laboratory-Scale Chlorination Chambers to Estimate Hydraulic Efficiency Indicators and Incorporate Them into the Design Process
DOI:
https://doi.org/10.70567/mc.v41i24.126Keywords:
CFD, Contact Tank, RTD, design optimization, residual chlorine ConcentrationAbstract
The environmental balance depends on water and its sanitation, which includes the treatment of wastewater to remove contaminants and restore its quality before discharging it into receiving bodies. This work focuses on the tertiary treatment of the disinfection process, specifically controlled chlorination. Computational fluid dynamics and the OpenFOAM(R) library are used to simulate different designs of a contact chamber at a laboratory scale and evaluate hydraulic efficiency, considering issues such as the development of recirculation zones and short-circuiting, which affect the minimum contact time between chlorine and the effluent.
References
Angeloudis, A., Stoesser, T. and Falconer, R.A. (2014). Predicting the disinfection efficiency range in chlorine contact tanks through a CFD-based approach. Water Research, 60, pp.118-129. https://doi.org/10.1016/j.watres.2014.04.037
Angeloudis, A., Stoesser, T., Gualtieri, C. and Falconer, R.A. (2016). Contact Tank Design Impact on Process Performance. Environmental Modeling & Assessment, 21(5),pp.563-576. https://doi.org/10.1007/s10666-016-9502-x
Demirel, E. y MM. Aral. 2016a. Unified análisis of multi-chamber contact tanks and mixing efficiency based on vorticidad field I: Hydrodynamic analysis. https://doi.org/10.3390/w8110495
Demirel, E. y MM. Aral. 2016b. Unified análisis of multi-chamber contact tanks and mixing efficiency based on vorticidad field II: Transport analysis. https://doi.org/10.3390/w8110537
Demirel, E. and Aral, M.M. (2018). Performance of Efficiency Indexes for Contact Tanks. Journal of Environmental Engineering, 144(9), p.04018076. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001431
Metcalf & Eddy, INC (1995). Engineering Sewage Treatment, Disposal and reuse. Unitary chemical processes, 7, pp.343-403.
Molina, SL. y Ragessi, IM. 2022. Simulación del Flujo en Alternativas de Diseños de una Cámara de Cloración a Escala de Laboratorio para Evaluar la Mejora en los Indicadores de Eficiencia Hidráulica.
Di Buo, M. y Ragessi, IM. 2022. Optimización del Diseño de la Cámara de Contacto en "EDAR-Bajo Grande", Córdoba, Argentina.
Geuzaine, C. Remacle, J. F. 2009 Gmsh: A 3-D element mesh generator with built-in pre and post-processing facilities. International Journal for Numerical Methods in Engineering, Issue, 461-477. https://doi.org/10.1002/nme.2579
OpenCFD. (2005) (http://www.opencfd.co.uk/openfoam/)
Ragessi I. M., Marquez Damian S., Garcia C. M., Pozzi Piacenza C., Romagnoli M., Hillman G. 2013. Validación de un modelo numérico para la simulación del flujo turbulento en una planta de tratamiento de agua potable. Mecánica Computacional Vol XXXII, págs. 3741-3761.
Raggesi, Iván Matías. (2017). Caracterización Hidrodinámica Detallada del Flujo en Estructuras Hidráulicas de Plantas de Tratamiento de Aguas y Aguas Residuales para Evaluar su Funcionamiento.
USEPA. 1991, Guidance manual for compliance with the filtration and disinfection requirements for public water system using surface water.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.