Inference of the Working Tension of the Guys of a Guyed Mast from AVM Technique
DOI:
https://doi.org/10.70567/mc.v41i3.15Keywords:
guyed masts, guys, AVM, tension stateAbstract
In order to guarantee the serviceability of communications, it is required that the guyed mast present a maintenance plan that allows the evaluation of different relevant aspects for their adequate structural performance, among which it is important to control the working tension at which the guys are located. For this, the planned techniques correspond to the direct and indirect methods. Both have advantages and disadvantages. The direct, precision in measurement but little available equipment, the indirect, simplicity in execution but imprecision in the results. As an alternative to the above, in the present investigation it is proposed to infer the tensional state of reins from the measurement of their natural frequencies using the technique known as Ambient Vibration Measurements (AVM), and then using the vibration theory of cables, infer the tension in them. In the present work, this technique was applied to the reins of an existing guyed mast. The stresses inferred in this way were then compared with measurements carried out by the direct method, as well as with results obtained from numerical modeling.
References
Amiri G. Seismic sensitivity indicators for tall guyed telecommunication towers. Computers and Structures, 80(3-4):349-364, 2002. https://doi.org/10.1016/S0045-7949(01)00175-4
ANSI/TIA-222-H. Structural Standard for Antenna Supporting Structures and Antennas. Telecommunications Industry Association, 2018.
Ballaben J.S., Guzmán A.M., y Rosales M.B. Nonlinear dynamics of guyed masts under wind load: Sensitivity to structural parameters and load models. Journal of Wind Engineering and Industrial Aerodynamics, 169:128-138, 2017. https://doi.org/10.1016/j.jweia.2017.07.012
Bendat J.S. y Piersol A.G. Engineering applications of correlation and spectral analysis. New York, 1980.
CIRSOC-306. Reglamento Argentino de Estructuras de Acero para Antenas. INTI, Instituto Nacional de Tecnología Industrial, 2018.
Gentile C. y Ubertini F. Radar-based dynamic testing and system identification of a guyed mast. In AIP conference proceedings, 1457:318-325, 2012. https://doi.org/10.1063/1.4730573
Ghafari Osgoie M., McClure G., Zhang X., y Gagnon D. Assessing the variability of seismic response analysis of a tall guyed telecommunication tower with ambient vibration measurements. In 15th World Conference on Earthquake Engineering 2012, 6:4306-4314, 2012.
Guzmán A.M. Estática, estabilidad y dinámica de mástiles reticulados con aplicación a estructuras arriostradas. Tesis doctoral, Universidad Nacional del Sur, Bahía Blanca, Bs. As., 2014. Disponible en https://repositoriodigital.uns.edu.ar/handle/123456789/3649.
Guzmán A., Calderón F., González del Solar G., y Roldan V. Efecto de la rigidez de riendas en el periodo fundamental de mástiles arriostrados de baja altura. XXVII Jornadas Argentinas de Ingeniería Estructural, 2022.
Guzmán A., Calderón F., y Palazzo G. Periodo fundamental de mástiles arriostrados de baja altura evaluados experimentalmente. Mecánica Computacional, XL:191-200, 2023.
Guzmán A., Calderón F., y Roldan V. Dynamic response of a guyed mast under seismic loadings. International Journal of Science and Researchg, 7(7):567-575, 2018.
Guzmán A., Calderón F., y Roldan V. Determinación de características dinámicas de un mástil arriostrado a partir de vibraciones ambientales. XII Congreso Chileno de Sismología e Ingeniería Sísmica, 2019.
Guzmán A., Calderón F., Roldan V., Bazán M., y Rodríguez L. Inferencia del periodo fundamental de mástiles arriostrados de baja altura. Mecánica Computacional, 38(8):249-258, 2021.
Harikrishna P., Annadurai A., Gomathinayagam S., y Lakshmanan N. Full scale measurements of the structural response of a 50 m guyed mast under wind loading. Engineering Structures, 25(7):859-867, 2003. https://doi.org/10.1016/S0141-0296(03)00005-1
He W.Y., Meng F.C., y Ren W.X. Cable force estimation of cables with small sag considering inclination angle effect. Advances in Bridge Engineering, 2:1-22, 2021. https://doi.org/10.1186/s43251-021-00037-8
Hensley G. y Plaut R. Three-dimensional analysis of the seismic response of guyed masts. Engineering Structures, 29(9):2254-2261, 2007. https://doi.org/10.1016/j.engstruct.2006.11.019
Ismail A. Seismic assessment of guyed towers: A case study combining field measurements and pushover analysis. HBRC journal, 12(1):47-53, 2016. https://doi.org/10.1016/j.hbrcj.2014.06.014
Konno K. y Ohmachi T. Ground motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremors. Bulletin of the Seismological Society of America, 88(1):228-241, 1998. https://doi.org/10.1785/BSSA0880010228
Koš?co T., Margetin M., Chmelko V., y Šulko M. Bridge cable tension estimation using the vibration method. Structures, 63:106332, 2024. https://doi.org/10.1016/j.istruc.2024.106332
Michel C., Guéguen P., y Bard P.Y. Dynamic parameters of structures extracted from ambient vibration measurements: An aid for the seismic vulnerability assessment of existing buildings in moderate seismic hazard regions. Soil dynamics and earthquake engineering, 28(8):593-604, 2008. https://doi.org/10.1016/j.soildyn.2007.10.002
SAP2000. Analysis Reference Manual v11. Computers and Structures, Inc., CSi., Berkeley, California, USA, 2007.
Saudi G. Structural assessment of a guyed mast through measurement of natural frequencies. Engineering Structures, 59:104-112, 2014. https://doi.org/10.1016/j.engstruct.2013.09.049
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.