Computational and Experimental Analysis of the Vibrations of a Cello Bridge

Authors

  • Maximiliano Carnelutto Grupo de Mecánica Computacional - Grupo de Vibraciones Mecánicas, Facultad Regional Delta, Universidad Tecnológica Nacional
  • Pablo E. Paupy Grupo de Mecánica Computacional - Grupo de Vibraciones Mecánicas, Facultad Regional Delta, Universidad Tecnológica Nacional
  • Lucas P. Manera Grupo de Mecánica Computacional - Grupo de Vibraciones Mecánicas, Facultad Regional Delta, Universidad Tecnológica Nacional
  • Darío Huggenberger Grupo de Mecánica Computacional - Grupo de Vibraciones Mecánicas, Facultad Regional Delta, Universidad Tecnológica Nacional
  • José M. Folgueiras Grupo de Mecánica Computacional - Grupo de Vibraciones Mecánicas, Facultad Regional Delta, Universidad Tecnológica Nacional
  • Javier L. Raffo Grupo de Mecánica Computacional - Grupo de Vibraciones Mecánicas, Facultad Regional Delta, Universidad Tecnológica Nacional

DOI:

https://doi.org/10.70567/mc.v41i1.2

Keywords:

Cello, bridge, vibrations, deformations

Abstract

It is proposed to study the frequency response of a French-type cello bridge using laboratory testing and computational models. Using the computational model of the bridge, the response of the vibration response due to the mass provided by the sensors is analysed. The results obtained from the measurements are compared with the numerical models.The vibration modes and deformations related to the density of the material, the shape of the bridge, the tension of the strings and the anchoring to the cello top are studied.

References

Bryzek J., Roundy S., Bircumshaw B., Chung C., Castellino K., Stetter J.R., y Vestel M. Marvelous mems. IEEE Circuits and Devices Magazine, 22(2):8-28, 2006. https://doi.org/10.1109/MCD.2006.1615241

Carlson M. y Kilbride G. Statistical analysis of violin, viola and cello bridges. J. Violin Soic. Am., XXVIII, 2019.

D'Alessandro A., Vitale G., Scudero S., D'Anna R., Costanza A., Fagiolini A., y Greco L. Characterization of mems accelerometer self-noise by means of psd and allan variance analysis. 7th IEEE International workshop on advances in sensors and interfaces (IWASI), páginas 159-164, 2017. https://doi.org/10.1109/IWASI.2017.7974238

Fletcher N. y Rossing T. The physics of musical instruments. Springer Science Business Media, 1998. https://doi.org/10.1007/978-0-387-21603-4

Hollocher D., Zhang X., Sparks A., Bart S., SawyerW. N.P., y Yang K. A very low cost, 3-axis, mems accelerometer for consumer applications. SENSORS, IEEE, páginas 953-957, 2019. https://doi.org/10.1109/ICSENS.2009.5398189

Kabala A., Niewczyk B., y Gapinski B. Violin bridge vibrations - fem. Vibrations in Physical Systems, 2018.

Lodetti L., Gonzales S., Antonacci F., y Sarti A. Stiffening cello bridges with design. Applied Science, 2023. https://doi.org/10.3390/app13020928

Norma E976-00 ASTM International. Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response, 2000.

RaymaekersW. Bridge shapes of the violin and other bowed instruments, 1400-1900: the origin and evolution of their design. Early Music, 48:225-250, 2020. https://doi.org/10.1093/em/caaa027

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024

Most read articles by the same author(s)