Numerical Study of Behaviour of Fibre Reinforced Concrete Deep Beam
DOI:
https://doi.org/10.70567/mc.v42.ocsid8268Keywords:
Fibre reinforced concrete, deep beams, numerical simulationAbstract
In this work we have studied the shear capacity of deep beams reinforced with a combination of steel and polypropylene fibers as a partial replacement for conventional shear reinforcement. To this end, a three-point flexural test was simulated using a three-dimensional model using ABAQUS© software.The HFRH was modeled considering polypropylene fiber concrete as a homogeneous material with equivalent properties on the one hand, and steel fibers as discrete elements distributed throughout the concrete volume. This study was complemented with a parametric study considering fiber orientation as a variable and an analysis of images obtained by computed tomography to evaluate the actual distribution and orientation of these fibers in the VGA. Finally, the numerical results are compared with the experimental data obtained by the authors.
References
Abousnina R., Premasiri S., Lokuge V.A.W., Vimonsatit V., Ferdous W., y Alarmeh O. Mechanical properties of macro polypropylene fibre-reinforced concrete. Polymers, 2021.https://doi.org/10.3390/polym13234112
ACI-544.2R-89. Aci 544. 2002.
Almusallam T.H., Siddiqui N.A., Iqbal R.A., y Abbas H. Response of hybrid-fiber reinforced concrete slabs to hard projectile impact. International Journal of Impact Engineering, 58:17- 30, 2013.https://doi.org/10.1016/j.ijimpeng.2013.02.005
Alwesabi E., Bakar B.H.A., Alshaikh I.M.H., Abadel A.A., Alghamdi H., y Wasim M. An experimental study of compressive toughness of steel-polypropylene hybrid fibre-reinforced concrete. Structures, 2022.https://doi.org/10.1016/j.istruc.2022.01.025
Banthia N., Majdzadeh F., Wu J., y Bindiganavile V. Fiber synergy in hybrid fiber reinforced concrete (hyfrc) in flexure and direct shear. Cement and Concrete Composites, 48:91-97, 2014.https://doi.org/10.1016/j.cemconcomp.2013.10.018
CIRSOC-201/05. Reglamento Argentino de estructuras, 2005.
Conforti A., Minelli F., Tinini A., y Plizzari G. Influence of polypropylene fibre reinforcement and width to effective depth ratio in wide-shallow beams. Engineering Structures, 2015.https://doi.org/10.1016/j.engstruct.2015.01.037
Denardi M., Escalante M., y Rougier V. Vigas de gran altura de hormigon reforzado con fibras: estudio numérico y experimental. XL CILAMCE. Ibero-Latin American Congress on Computational Methods in engineering, 2019.
Estefania C. On Shear Behavior of Structural Elements Made of Steel Fiber Reinforced Concrete. Tesis de Doctorado, Universitat Politècnica de València, 2015.
Ferrado F. L., Escalante M., y Rougier V. Estudio numérico probabilístico de la capacidad resistente de tubos de hrfa con distribución aleatoria de fibras. Informes de la Construcción,2023.https://doi.org/10.3989/ic.90428
fib model code. fib model code for concrete structures 2010. Ernst and Sohn, Wiley, 2010.ISBN 9783433604090.
González F. y Rougier V. Análisis experimental del comportamiento mecánico de tubos de hormigón reforzado con fibras híbridas. Informes de la Construcción, 74(565):e432-e432, 2022.https://doi.org/10.3989/ic.85975
Kupfer H.B. y Gerstle K.H. Behavior of concrete under biaxial stresses. Journal of the engineering mechanics division, 99(4):853-866, 1973.https://doi.org/10.1061/JMCEA3.0001789
Lantsoght E.O.L. How do steel fibers improve the shear capacity of reinforced concretebeams without stirrups? Composites Part B, 2019.https://doi.org/10.1016/j.compositesb.2019.107079
Lubliner J., Oliver J., Oller S., y Oñate E. A plastic-damage model for concrete. International Journal of solids and structures, 25(3):299-326, 1989.https://doi.org/10.1016/0020-7683(89)90050-4
Parra-Montesinos G.J., Wight J.K., Kopczynski C., Lequesne R.D., M. Setkit A.C., y Ferzli J. Elimination of diagonal reinforcement in earthquake-resistant coupling beams through use of fiber-reinforced concrete. Proceedings of the First ACI and JCI JOint Seminar: Design of Concrete Structures Against Earthquake and Tsunami Disasters, 2017.
RILEM-162T. Test and design methods for steel fibre reinforced concrete. 2002.
Singh H. Steel Fiber Reinforced Concrete Behavior, Modelling and Design. Springer, 2017.https://doi.org/10.1007/978-981-10-2507-5
Smarzewski P. Analysis of failure mechanics in hybridfibre-reinforced high-performance concrete deepbeams with and without openings. Materials, 2018.https://doi.org/10.3390/ma12010101
Zerbino R.L. El hormigón reforzado con fibras. Asociación Argentina de Tecnología del Hormigón, 2020.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.

