Analysis of Attenuation Bands in Straight Beams Built by Additive Manufacturing Incorporating Mass-Spring Mechanical Resonators

Authors

  • Walter H. Fruccio Universidad Nacional de La Pampa, Facultad de Ingeniería. General Pico, Provincia de La Pampa, Argentina
  • Federico R. Masch Universidad Nacional de La Pampa, Facultad de Ingeniería. General Pico, Provincia de La Pampa, Argentina
  • Marcelo T. Piován Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca, Centro de Investigaciones de Mecánica Teórica y Aplicada. Bahía Blanca, Provincia de Buenos Aires, Argentina
  • Rog Hecker Universidad Nacional de La Pampa, Facultad de Ingeniería. General Pico, Provincia de La Pampa, Argentina

DOI:

https://doi.org/10.70567/mc.v41i5.26

Keywords:

3D Printing, Meta-structures, Attenuation, Experimental Tests

Abstract

Additive manufacturing has had an exponential growth in recent years. This generates interest in its implementation for the construction of meta-structures. In this work, a one-dimensional computational model of a thin-walled straight beam is introduced, with the inclusion of mechanical mass-spring resonators. A 1D finite element model was built from the weak formulation of the virtual work principle. The model was evaluated through different dynamic tests, on straight beams manufactured with 3D printing technology. In this sense, the spring of the resonators was also manufactured with this technology. As a previous step, tests were carried out to determine the stiffness and effective mass parameters of the resonator, in order to obtain values for later comparison with the model to be evaluated. These parameters can generate a modification in the attenuation band, which makes the study of variability due to uncertainty in these parameters relevant to our analysis.

References

Bathe K.J. Finite Element procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1996.

Piovan M. y Cortínez V. Mechanics of shear deformable thin-walled beams made of composite materials. Thin Walled Structures, 45:37-62, 2007. https://doi.org/10.1016/j.tws.2006.12.001

Piovan M., Domini S., y Ramirez J. In-plane and out-of-plane dynamics and buckling of functionally graded circular curved beams. Composite Structures, 94(11):3194-3206, 2012. ISSN 0263-8223. https://doi.org/10.1016/j.compstruct.2012.04.032.

Piovan M. y Sampaio R. Parametric and non-parametric probabilistic approaches in the mechanics of thin-walled composite curved beams. Thin-Walled Structures, 90:95-106, 2015. ISSN 0263-8231. https://doi.org/10.1016/j.tws.2014.12.018.

Soize C. Uncertainty Quantification, volumen 47. 2017. ISBN 978-3-319-54338-3.

Sugino C. On the mechanism of bandgapformation in locally resonant finite elastic metamaterials. Journal of Applied Physics, 120:134-501, 2016. https://doi.org/10.1063/1.4963648

Sugino C. A general theory for bandgap estimationin locally resonant metastructures. Journal of Sound and Vibration, 406:104-123, 2017. https://doi.org/10.1016/j.jsv.2017.06.004

Sugino C., Ruzzene M., y Erturk A. Merging mechanical and electromechanical bandgaps in locally resonant metamaterials and metastructures. Journal of the Mechanics and Physics of Solids, 116:323-333, 2018. ISSN 0022-5096. https://doi.org/10.1016/j.jmps.2018.04.005

Wu L., Xue J., Tian X., Liu T., y Li D. 3d-printed metamaterials with versatile functionalities. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2(3):100091, 2023. ISSN 2772-6657. https://doi.org/10.1016/j.cjmeam.2023.100091.

Zhou X., Ren L., Song Z., Li G., Zhang J., Li B., Wu Q., Li W., Ren L., y Liu Q. Advances in 3d/4d printing of mechanical metamaterials: From manufacturing to applications. Composites Part B: Engineering, 254:110585, 2023. ISSN 1359-8368. https://doi.org/10.1016/j.compositesb.2023.110585.

Published

2024-11-08