Analysis of the Sensitivity to Imperfections in the Limit Load of Large Tanks

Authors

  • Horacio N. Fideleff Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Instituto de Mecánica Aplicada y Estructuras (IMAE). Rosario, Argentina. https://orcid.org/0009-0008-4951-4535
  • Facundo T. Leguizamón Pfeffer Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Instituto de Mecánica Aplicada y Estructuras (IMAE). Rosario, Argentina. https://orcid.org/0009-0005-6196-0501
  • Valentín G. Mendes Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Instituto de Mecánica Aplicada y Estructuras (IMAE). Rosario, Argentina. https://orcid.org/0009-0008-5010-9369
  • Oscar Möller Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Instituto de Mecánica Aplicada y Estructuras (IMAE). Rosario, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8329

Keywords:

Sensitivity to imperfections, Self-supporting dome roof, API 650 tank

Abstract

Nonlinear geometric analysis of structures allows for the evaluation of the influence of accidental manufacturing deviations in geometry, known as imperfections, on the buckling limit load. This paper investigates the influence of imperfections in a tank 17.5 meters high and 50 meters in diameter with a cylindrical sheet metal wall and a domed roof consisting of a sheet metal reinforced with beams and no interior columns. The design was carried out under the API 650 standard and its design variables were optimized and published in previous works. Prior to the tank analysis, two classic examples are presented: a pin-to-pin column with a centered compression load and a thin-walled cylinder with a longitudinal compression load. The column converges asymptotically to the critical buckling load, while the cylinder exhibits a decrease in limit load relative to the critical load. The finite element method is applied using the commercial software COMSOL Multiphysics. Finally, the resolution of the tank is addressed, seeking to establish the sensitivity to imperfections of this structure. Interesting conclusions are obtained that can be applied to the design of these industrial tanks.

References

Chapelle, D., Bathe, K.J., 2003. The Finite Element Analysis of Shells - Fundamentals. Springer-Verl., Computational Fluid and Solid Mechanics XI, 330. https:/doi.org/10.1007/978-3-662-05229-7

Donell, L.H., Wan, C.C., 1950. Effect of Imperfections on Buckling of Thin Cylinders and Columns Under Axial Compression. J. Appl. Mech. 17, 73–83. https:/doi.org/10.1115/1.4010060

Hsu, L., Crate, H., Schwartz, E.B., 1950. Buckling of thin-walled cylinder under axial compression and internal presssure (Thechnical Note No. 2021). NACA, Washington.

Leguizamon Pfeffer, F., Fideleff, H.N., Möller, O., 2024. Optimización de la Cubierta Esférica Autoportante de un Tanque Industrial de Grande Dimensiones. Mecánica Comput., Análisis Estructural(B) 41. https:/doi.org/10.70567/mc.v41i3.17

Lorenz, R., 1908. Achsensymmetrische Verzerrungen in dünnwandigen Hohlzylindern. Z.Vereines Dtsch. Ingenieure 52, 1706–1713.

Weingarten, V.I., Seide, P., Peterson, J.P., 1968. Buckling of thin-walled circular cylinders. NASA.

Published

2025-11-28

Issue

Section

Conference Papers in MECOM 2025

Most read articles by the same author(s)