Determination of the Worst Imperfection in Framed Structures
DOI:
https://doi.org/10.70567/mc.v42.ocsid8562Keywords:
Steel Structures, stability, imperfections, buckling modesAbstract
Current structural analysis codes specify that structures must be analyzed considering the presence of imperfections in their geometry—that is, deviations from the ideal or perfect geometry defined in the design. These standards also state that the imperfection causing the greatest destabilizing effect must be considered; however, they do not propose criteria for identifying it. This work presents a methodology for calculating the worst imperfection in a structure composed of beams and columns. It is well known that the shape of the worst imperfection is associated with the first buckling modes, and particularly, if the first critical load is sufficiently separated from the second, then the worst imperfection corresponds to the first buckling mode. This is typically the case for most frame structures. An efficient iterative method is then proposed to find the first two buckling modes in order to verify that the first mode indeed represents the worst imperfection.
References
ANSI/AISC. ANSI/AISC 360-16 Specification for Structural Steel Buildings. 2019.
Bathe K.J. The subspace iteration method – Revisited. Computers & Structures, 126:177–183, 2013. https://doi.org/10.1016/j.compstruc.2012.06.002.
Bazant Z.P. y Cedolin L. Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. World Scientific, 2010.
Cullum J.K. y Willoughby R.A. Lanczos Algorithms for Large Symmetric Eigenvalue Computations: Vol. 1: Theory. SIAM, 2002. ISBN 978-0-89871-523-1.
EUROCODE. EUROCODE 3, Design of Steel Structures – Part 1-1: General rules and rules for buildings. 2009.
Godoy L.A. Thin-Walled Structures with Structural Imperfections. Elsevier, 1996.
INTI-CIRSOC. CIRSOC 301 - reglamento Argentino de Estructuras de Acero para Edificios. 2018.
Jouglard C.E. y Perez A.L. Un Elemento Finito Simplificado para Análisis de Vigas Imperfectas. En 28 Jornadas Argentinas de Ingeniería Estructural. Buenos Aires, Argentina, 2024.
Peng-Li S. Buckling analysis of nonlinear structures using Lanczos method. Computers & Structures, 36(6):1111–1120, 1990. https://doi.org/10.1016/0045-7949(90)90219-R.
Timoshenko S. y Gere J.M. Theory of Elastic Stability (2ed.). McGraw-Hill, 2 ed. edición, 1961.
Toledo J.A. Metodología para el Análisis No Lineal Geométrico de Estructuras de Barras con Imperfecciones. Tesis de Maestría, Universidad Tecnológica Nacional. Facultad Regional General Pacheco, Buenos Aires, Argentina, 2021.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.

