Influence of Thermo-Mechanical Properties on Pre-Stressed Beams Subjected to Temperature Cycles

Authors

  • Gonzalo J. Ruano Universidad Nacional de Salta, Facultad de Ingeniería, INIQUI (CONICET) & Universidad Católica de Salta, Facultad de Ingeniería. Salta, Argentina.
  • María Virginia Quintana Universidad Nacional de Salta, Facultad de Ingeniería, INIQUI (CONICET) & Universidad Católica de Salta, Facultad de Ingeniería. Salta, Argentina.
  • Daniela Scotta Universidad Católica de Salta, Facultad de Ingeniería. Salta, Argentina.
  • Marcelo T. Piován Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca, Centro de Investigaciones de Mecánica Teórica y Aplicada. Bahía Blanca, Argentina

DOI:

https://doi.org/10.70567/mc.v41i5.29

Keywords:

Uncertainty, Thermo-Mechanical Properties, Parametric Study, Thermal Cycles

Abstract

Prestressed concrete beams are extensively used in the construction industry and may be exposed to extreme loads, such as those caused by building fires. Concrete is a material that evolves over time, particularly when exposed to high temperatures; it is sensitive to the highest temperature reached an nowadays the importance of the descending phase is recognized. This work employs the finite element method to model load histories using transient thermo-mechanical analysis. The objective is to capture, through a parametric probabilistic approach, the structural effects of uncertainties in the thermal and mechanical properties of prestressed beams subjected to thermal cycles. The descending branch is analyzed at various rates, and the mechanical response is evaluated. The maximum entropy principle is used to derive the probability density functions for the random parameters.

References

Campos DF, Keil GG and Piovan MT (2018) Cuantificación de incertidumbre paramétrica asociada al galloping en cables de transmisión de electricidad. Mecánica Computacional XXXVI: 651-660.

Foti D (2014) Prestressed slab beams subjected to high temperatures. Composites Part B: Engineering 58. Elsevier Ltd: 242-250. https://doi.org/10.1016/j.compositesb.2013.10.083

Giorgio LE Di and Piovan MT (2019) Aspectos de incertidumbre en la dinámica de metaestructuras piezoeléctricas curvas. Mecánica Computacional XXXVII: 629-637.

Kodur VKR, Banerji S and Solhmirzaei R (2020) Test methods for characterizing concrete properties at elevated temperature. Fire and Materials 44(3): 381-395. https://doi.org/10.1002/fam.2777

Lubliner J (1972) On the Thermodynamic Foundations of Non-Linear Mechanics. Int. Journal Non Linear Mechanics 7: 237-254. https://doi.org/10.1016/0020-7462(72)90048-0

Luccioni B, Oller S and Danesi R (1996) Coupled plastic-damaged model. Computer Methods in Applied Mechanics and Engineering 129(1-2): 81-89. https://doi.org/10.1016/0045-7825(95)00887-X

Luccioni BM and Rougier VC (2005) A plastic damage approach for confined concrete. Computers and Structures 83(27): 2238-2256. https://doi.org/10.1016/j.compstruc.2005.03.014

Luccioni BM, Figueroa MI and Danesi RF (2003) Thermo-mechanic model for concrete exposed to elevated temperatures. Engineering Structures 25(6): 729-742. https://doi.org/10.1016/S0141-0296(02)00209-2

Martín HD, Martín N, Pereson MN, et al. (2021) Métodos probabilísticos para el estudio de vibraciones libres de entramados planos con parámetros inciertos. Mecánica Computacional XXXVIII: 531-539.

Möller O (2019) Confiabilidad de Estructuras.

Niels MO and Ristinmaa (2005) The Mechanics of Constitutive Modeling. Elsevier. Available at: https://linkinghub.elsevier.com/retrieve/pii/B9780080446066X50000.

Piovan MT and Sampaio R (2015) Parametric and non-parametric probabilistic approaches in the mechanics of thin-walled composite curved beams. Thin-Walled Structures 90. Elsevier: 95-106. https://doi.org/10.1016/j.tws.2014.12.018

Ruano G and Piovan M (2023) Estudio paramétrico de la influencia de las propiedades mecánicas en viguetas pretensadas sometidas a ensayos de alta temperatura. XL: 383-390.

Ruano Gonzalo, Nallim L and Oller S (2018) Simulación Termo-Mecánica de Estructuras de Hormigón Pre-Comprimido con Armadura Pre-Tesa. Mecánica Computacional 36(30): 1449-1463.

Ruano G., Isla F, Luccioni B, et al. (2018) Steel fibers pull-out after exposure to high temperatures and its contribution to the residual mechanical behavior of high strength concrete. Construction and Building Materials 163. https://doi.org/10.1016/j.conbuildmat.2017.12.129

Ruano G, Quintana V, Lascala A, et al. (2023) Simulación termo mecánica de viguetas pretensadas sometidas a alta temperatura. XL: 6-9.

Sampaio, Rubens; Lima R (2003) Modelagem estocástica e geracâo de amostras de variáveis e vetores aleatórios.

Sha P and Asadi I (2018) Concrete as a thermal mass material for building applications - A review. 19(April): 14-25. https://doi.org/10.1016/j.jobe.2018.04.021

Stefanou G (2009) The stochastic finite element method: Past, present and future. Computer Methods in Applied Mechanics and Engineering 198(9-12): 1031-1051. https://doi.org/10.1016/j.cma.2008.11.007

Tomar SS, Zafar S, Talha M, et al. (2018) State of the art of composite structures in nondeterministic framework: A review. Thin-Walled Structures 132:700-716.(July). Elsevier Ltd. https://doi.org/10.1016/j.tws.2018.09.016

Truesdell, C.; Toupin R (1960) The Classical Field Theories. Handbuch Der Physik. Ulm, F. J.; Acker, P.; Lévy M (1999) The Channel Fire II: Analysis of Concrete Damage.https://doi.org/10.1007/978-3-642-45943-6_2

ASCE Journal of the Engineering Mechanics 125(3): 283-289.

Published

2024-11-08