Computational Modeling of a Confined Masonrywall under Lateral Seismic Excitation
DOI:
https://doi.org/10.70567/mc.v42.ocsid8437Keywords:
Confined Masonry, Numerical Model, Seismic Excitation, Plasticity, ABAQUSAbstract
Confined masonry walls are widely used in residential construction due to their low cost and good structural resistance. In this type of structure, shear stress is predominant, potentially leading to brittle failure characterized by the sudden formation of diagonal cracks that cross the masonry panel. This condition becomes more critical when the structure is subjected to lateral seismic loading. Masonry, steel, and concrete elements all experience significant degradation of their mechanical properties with increasing seismic energy. This paper presents a numerical study on the lateral response of a confined masonry wall subjected to lateral seismic excitation. A nonlinear 3D finite element computational model was developed using the commercial software ABAQUS. The model considers the material behavior through the calibration of a plastic damage model for confined masonry using experimental data from scientific literature. The results obtained are validated by comparison with numerical and experimental tests available in the literature and with current design code provisions.
References
Abaqus D.S.S.C. Abaqus Analysis User’s Manual Version 6.14. 2014.
Alfarah B., López-Almansa F., y Oller S. New methodology for calculating damage variables evolution in plastic damage model for rc structures. Engineering Structures, 132:70–86, 2017. https://doi.org/10.1016/j.engstruct.2016.11.022.
Araoz T. y Velezmoro J. Reforzamiento de viviendas existentes construidas con muros confinados hechos con ladrillos pandereta – segunda etapa. Tesis de Maestría, Pontificia Universidad Católica del Perú (PUCP), Perú, 2012. Tesis para optar el Título de Ingeniero Civil.
Coral M. Ensayos cíclicos en muros de albañilería confinada construidos con ladrillos king kong de fabricación industrial. 2017. Repositorio PUCP.
FEMA 461. Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components. Informe Técnico FEMA 461, Federal Emergency Management Agency (FEMA), Washington, D.C., USA, 2007.
Hillerborg A., Modéer M., y Petersson P.E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6(6):773–781, 1976. https://doi.org/10.1016/0008-8846(76)90007-7.
Kaushik H.B., Rai D.C., y Jain S.K. Stress-strain characteristics of clay brick masonry under uniaxial compression. Journal of Materials in Civil Engineering, 19(9):728–739, 2007. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(728).
Krätzig W.B. y Pölling R. An elasto-plastic damage model for reinforced concrete with minimum number of material parameters. Computers & Structures, 82(15-16):1201–1215, 2004. https://doi.org/10.1016/j.compstruc.2004.03.002.
Lee J. y Fenves G.L. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 124(8):892–900, 1998. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
Lubliner J., Oliver J., Oller S., y Oñate E. A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3):299–326, 1989. https://doi.org/10.1016/0020-7683(89)90050-4.
Mamani P. Comportamiento mecánico de muros de albañilería tubular confinada reforzados con malla electrosoldada ante cargas sísmicas y gravitacionales. Tesis de Maestría, Pontificia Universidad Católica del Perú (PUCP), Perú, 2015. Tesis para optar el grado de Magister en Ingeniería Civil.
Park Y.J., Reinhorn A.M., y Kunnath S.K. Idarc: Inelastic damage analysis of reinforced concrete frame-shear-wall structures. Informe Técnico NCEER-87-0008, State University of New York at Buffalo, National Center for Earthquake Engineering Research, 1987.
Pérez G., Balarezo I., y Gonzales G. Seismic performance assessment of a peruvian public school “module 780-actual” using nonlinear static and dynamic analysis. TECNIA, 35(1):55– 68, 2025. https://doi.org/10.21754/tecnia.v35i1.2460.
Servicio Nacional de Capacitación para la Industria de la Construcción (SENCICO). Norma técnica e.070 – albañilería. 2020. Disponible en: https://cdn.www.gob.pe/uploads/document/file/2366661/56%20E.070%20ALBA%C3%91ILERIA.pdf.
Yacila J., Camata G., Salsavilca J., y Tarque N. Pushover analysis of confined masonry walls using a 3d macro-modelling approach. Engineering Structures, 201:109731, 2019. https://doi.org/10.1016/j.engstruct.2019.109731.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.

