Analysis of Control and Energy Harvesting in a Viscoelastic-Piezoelectric Composite Plate

Authors

  • Aaron E. Gelves Universidad Nacional del Sur, Instituto de Física del Sur (IFISUR), Departamento de Física. Bahía Blanca, Argentina.
  • Mariano Febbo Universidad Nacional del Sur, Instituto de Física del Sur (IFISUR), Departamento de Física. Bahía Blanca, Argentina.
  • Paolo Marcacuzco Cuevas Universidad Federal de Paraná (UFPR), Departamento de Ingeniería Mecánica. Curitiba, Brasil.
  • Carlos A. Bavastri Universidad Federal de Paraná (UFPR), Departamento de Ingeniería Mecánica. Curitiba, Brasil.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8238

Keywords:

Harvester-absorber, frequency, response, viscoelastic material

Abstract

A dynamic vibration absorber dissipates the mechanical energy of the system to which it is attached (primary system). An energy harvester converts the vibrations generated by this system into electrical energy. A device called a dynamic vibration absorber-harvester (DVAH) serves the dual purpose of reducing the vibratory response of the primary system and generating energy. This work presents a continuous model of a DVAH composed of a bimorph piezoelectric plate (model Q220-H4BR-2513YB), a viscoelastic sheet made of butyl rubber (model C1002-01PSA), and a stainless-steel layer that acts as a constraining layer. The composite model leads to the derivation of the DVAH’s equations of motion based on Hamilton’s principle, employing a fractional derivative model for the viscoelastic material. By applying modal decomposition and using Fourier analysis, it is possible to determine the system’s natural frequency, displacement, and generated voltage, both in the time and frequency domains. The validity of these results is compared with a previously developed lumped parameter model and a finite element simulation implemented in commercial software.

References

Bronkhorst K., Febbo M., Lopes E., y Bavastri C. Experimental implementation of an optimum viscoelastic vibration absorber for cubic nonlinear systems. Engineering Structures, 163:323–331, 2018. http://doi.org/10.1016/j.engstruct.2018.02.074.

Den Hartog J.P. Mechanical Vibrations. McGraw-Hill, New York, 1956.

Febbo M. Optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber. Journal of Vibration and Acoustics, 134(2):021010, 2012. ISSN 1048-9002. http://doi.org/10.1115/1.4004667.

Fogang V. An analytical solution to isotropic rectangular cantilever kirchhoff plates using two single series and the boundary collocation method. 2025. http://doi.org/10.20944/preprints202411.1009.v2.

Gao J. y Shen Y. Vibration and damping analysis of a composite plate with active and passive damping layer. Applied Mathematics and Mechanics (English Edition), 20(10):1075–1086, 1999. http://doi.org/10.1007/BF02460324.

Gao Y., Zhang S., Ma S., y Markert B. Vibration and damping analysis of cantilever sandwich plates with viscoelastic core using zig-zag theory. PAMM, 23(1):e202200322, 2023. http://doi.org/https://doi.org/10.1002/pamm.202200322.

Gatti C.D., Ramirez J.M., Febbo M., y Machado S.P. Multimodal piezoelectric device for energy harvesting from engine vibration. Journal of Mechanics of Materials and Structures, 13(1):17–34, 2018.

Gelves A., Febbo M., y Bavastri C. A viscoelastic harvester-absorber for energy generation and vibration control. Smart Materials and Structures, 33(11):115020, 2024. http://doi.org/10.1088/1361-665X/ad840c.

Hadji L., Plevris V., Madan R., y Ait Atmane H. Multi-directional functionally graded sandwich plates: Buckling and free vibration analysis with refined plate models under various boundary conditions. Computation, 12(4), 2024. ISSN 2079-3197. http://doi.org/10.3390/computation12040065.

Khalfi B. y Ross A. Transient response of a plate with partial constrained viscoelastic layer damping. International Journal of Mechanical Sciences, 68:304–312, 2013. ISSN 0020-7403. http://doi.org/https://doi.org/10.1016/j.ijmecsci.2013.01.032.

Park C. y Baz A. Newtonian and variational formulations of the vibrations of plates with active constrained layer damping. páginas 3079–3088. 2001. http://doi.org/10.1115/DETC2001/VIB-21738.

Rao S. Mechanical Vibrations. Pearson Prentice Hall, 2004. ISBN 9780131207684.

Published

2025-12-03

Issue

Section

Conference Papers in MECOM 2025