A Simple Mathematical Model of an Oscillatory System for Marine Applications
DOI:
https://doi.org/10.70567/mc.v42.ocsid8298Keywords:
Lagrangian modeling, oscillatory system, marine applicationsAbstract
A simplified mathematical model, formulated within the Lagrangian framework, is presented to describe the behavior of a two-dimensional oscillatory system subjected to external excitations. The model seeks to reproduce certain patterns observed in field measurements carried out in the Bahía Blanca estuary, adopting a qualitative calibration as the adjustment criterion. The underlying theory and assumptions of the model are described, based on observations and statistical information from the estuary itself. The theoretical model is validated against measurement results in terms of power spectra and time histories. The findings contribute to an ongoing research line on wave energy converters developed by the authors.
References
Battaglia, L., Storti, M., Rojas, L. y Dotti, F. (2023). Caracterización del oleaje en el estuario de Bahía Blanca para la obtención de energía undimotriz. Mecánica Computacional, 41, 1255-1264. https://doi.org/10.70567/mc.v41i24.124
Cruz, J. (2008). Ocean Wave Energy: Current Status and Future Perspectives. Springer. https://doi.org/10.1007/978-3-540-74895-3
Dotti, F. y Virla, J., Nonlinear dynamics of the parametric pendulum with a view on wave energy harvesting applications. Journal of Computational and Nonlinear Dynamics, 2021. https://doi.org/10.1115/1.4050699
Dotti, F., Rojas, L., Virla, N., Oxarango, L. y Vera, C. (2024). Estudio de oleaje y viento en el Km 28 del canal principal del estuario de Bahía Blanca con miras a aplicaciones undimotrices. V Congreso Argentino de Energías Sustentables (CES 2024), Bahía Blanca, 16-19 de octubre de 2024.
Falnes, J. (2002). Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction. Cambridge University Press. https://doi.org/10.1017/CBO9780511754630
Goldstein, H., Poole, C. y Safko, J. (2002). Classical Mechanics. Addison-Wesley.
Harnois, V., Weller, S., Johanning, L., Thies, P., Le Boulluec, M., Le Roux, D., Soulé, V. y Ohana, J. (2015). Numerical model validation for mooring systems: Method and application for wave energy converters. Renewable Energy, 75, 869-887. https://doi.org/10.1016/j.renene.2014.10.063
Perillo, G. y Píccolo, C. (1995). Geomorphological and physical characteristics of the Bahía Blanca estuary, Argentina. En: Estuaries of South America, Capítulo 9. Elsevier, Ámsterdam, Países Bajos.
Rojas, L., Dotti, F., Battaglia, L. y Storti, M. (2024). Simulación de un convertidor undimotriz de péndulo paramétrico con miras a su implementación en el estuario de Bahía Blanca. Mecánica Computacional, 41, 747-756. https://doi.org/10.70567/mc.v41i14.74
Sarpkaya, T. y Isaacson, M. (1981). Mechanics of Wave Forces on Offshore Structures. Van Nostrand Reinhold.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.

