Advanced Predictive Models for the Smart Management of Drinking Water Consumption

Authors

  • José L. Hernández Universidad Nacional de Río Cuarto, Facultad de Ingeniería. Río Cuarto, Argentina. https://orcid.org/0000-0002-6331-3237
  • Carlos O. Carossio Universidad Nacional de Río Cuarto, Facultad de Ingeniería. Río Cuarto, Argentina.
  • Silvia B. Simón Universidad Nacional de Río Cuarto, Facultad de Ingeniería. Río Cuarto, Argentina.
  • Gabriela Minetti CONICET-Universidad Nacional de La Pampa, Facultad de Ingeniería. General Pico, Argentina. https://orcid.org/0000-0003-1076-6766
  • Carolina Salto CONICET-Universidad Nacional de La Pampa, Facultad de Ingeniería. General Pico, Argentina. https://orcid.org/0000-0002-3417-8603
  • Mercedes del Carmen Carnero Universidad Nacional de Río Cuarto, Facultad de Ingeniería. Río Cuarto, Argentina. https://orcid.org/0000-0001-6037-4790

DOI:

https://doi.org/10.70567/mc.v42.ocsid8407

Keywords:

Machine Learning, Time series, Water distribution systems, Random Forest, Prophet

Abstract

Accurate prediction of drinking water consumption is a key challenge for utility providers, especially in contexts where manual metering remains the predominant method. In many regions of Argentina, cooperatives still rely on these records, which leads to billing errors, hinders operational planning, and creates conflicts with users. This work addresses this issue by evaluating and comparing three forecasting methodologies: a classic statistical method (Moving Averages), an ensemble machine learning model (Random Forest), and a specialized time-series procedure (Prophet). The results show that machine learning-based models, such as Random Forest, significantly reduce prediction errors compared to traditional methods. It is concluded that the adoption of these tools provides valuable insights to optimize strategic decision-making in cooperative water management.

References

Box, G., Jenkins, G., Reinsel, G. and Ljung, G. Time series analysis: forecasting and control. John Wiley & Sons. 2015

Ghannam, S., Hussain, F.. Short-term water demand forecasting: a review. Australasian Journal of Water Resources, 1–19, 2024. https://doi.org/10.1080/13241583.2024.2350102

Brentan, B., Luvizotto, E., Herrera, M., Izquierdo, J., Pérez-García, R. Hybrid regression model for near real-time urban water demand forecasting. Journal of Computational and Applied Mathematics. Volume 309, Pages 532-541, ISSN 0377-0427. 2017.

Albahli, Saleh. (2025). LSTM vs. Prophet: Achieving Superior Accuracy in Dynamic Electricity Demand Forecasting. Energies. 18. 278. 10.3390/en18020278.

Nadar, Ajesh & Chandane, Soham & Raj, Gabriel & Pasi, Nihar & Patil, Yash. (2025). Automated Energy Billing with Blockchain and the Prophet Forecasting Model: A Holistic Approach. 10.48550/arXiv.2506.16649.

Schisa, V. & Farnè, M., 2025. The Impact of Climatic Factors on Respiratory Pharmaceutical Demand: A Comparison of Forecasting Models for Greece. arXiv preprintarXiv:2505.10642.

Taylor, S.J. & Letham, B., 2018. Forecasting at scale. The American Statistician, 72(1), pp.37–45. https://doi.org/10.1080/00031305.2017.1380080

Published

2025-12-04