Comparative Evaluation of Performance and Energy Consumption on Multi-Core Systems under CPU Frequency Governors in Native and Containerized Environments

Authors

  • Daniel L. Anunziata Universidad Nacional de Río Cuarto (UNRC), Facultad de Ingeniería — Laboratorio de Redes, Grupo de Optimización, Grupo Ciencia de Datos. Río Cuarto, Argentina. https://orcid.org/0009-0008-7954-8269
  • Emilio Corti Universidad Nacional de Río Cuarto (UNRC), Facultad de Ingeniería — Laboratorio de Redes, Grupo de Optimización, Grupo Ciencia de Datos. Río Cuarto, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8463

Keywords:

DVFS, Docker, RAPL, Sysbench, ONNX Runtime, Energy efficiency

Abstract

Energy efficiency is a strategic objective in High-Performance Computing (HPC) and in the operation of modern data centers. This work presents a study to characterize the impact of the Linux kernel’s processor frequency governors on the performance, power consumption, and thermal behavior of a multi-core architecture. The evaluation is carried out in native and containerized environments. Two workloads are analyzed: Sysbench-CPU (compute-intensive, CPU-bound) and ONNX Runtime / ResNet-50 (inference, memory-bound). The recorded metrics include latency, throughput, power, temperature, frequency, and effective CPU usage. The results show low overhead from containers and a marked influence of the frequency governor on absolute performance and energy efficiency.

References

Abraham S., Paul A.K., Khan R.I.S., y Butt A.R. On the use of containers in high performance computing environments. Future Generation Computer Systems, 117:309–321, 2021. http://doi.org/10.1109/CLOUD49709.2020.00048.

Andrae A.S.G. y Edler T. On global electricity usage of communication technology: Trends to 2030. Challenges, 6(1):117–157, 2015. http://doi.org/10.3390/challe6010117.

Anunziata D. y Corti E. Observabilidad de la eficiencia energética en servidores de centros de datos con solución de código abierto. CACIC 2024, 2024. http://doi.org/10.35537/10915/172755.

Costa G.D. y Pierson J.M. DVFS governor for HPC: Higher, faster, greener. En 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, páginas 533–540. 2015. http://doi.org/10.1109/PDP.2015.73.

Dickson V.L. y Sebok P.T. Quantifying the power consumption of processes on linux using intel rapl. Informe Técnico, Aalborg University, 2023.

Felter W., Ferreira A., Rajamony R., y Rubio J. An updated performance comparison of virtual machines and linux containers. Informe Técnico RC25482, IBM Research, 2015.

Kopytov A. Sysbench: a system performance benchmark. https://github.com/akopytov/sysbench, 2024.

ONNX Runtime Team. Onnx runtime: High-performance inference engine. https://onnxruntime.ai, 2024. Official documentation.

Potdar A.M., GB N.D., Kengond S., y Mulla M.M. Performance evaluation of docker container and virtual machine. Procedia Computer Science, 171:1419–1428, 2020. http://doi.org/10.1016/j.procs.2020.04.152.

Raffin G. y Trystram D. Dissecting the software-based measurement of cpu energy consumption: A comparative analysis. IEEE Transactions on Parallel and Distributed Systems, 36(1):96–107, 2025. http://doi.org/10.1109/TPDS.2024.3492336.

Santos E.A., McLean C., Solinas C., y Hindle A. How does docker affect energy consumption? evaluating workloads in and out of docker containers. Journal of Systems and Software, 146:14–25, 2018. ISSN 0164-1212. http://doi.org/https://doi.org/10.1016/j.jss.2018.07.077.

Selim S., Chang Y., yWang Y. Hardware for hpc, data centers, and ai 2025–2035: Technologies, markets, forecasts. IDTechEx Report, 2025. https://www.idtechex.com/en/research-report/hardware-for-hpc-and-ai-2025/1058.

Zhao Y., He R., Kersting N., Liu C., Agrawal S., Chetia C., y Gu Y. Onnxexplainer: an onnx based generic framework to explain neural networks using shapley values. 2023. http://doi.org/10.48550/arXiv.2309.16916.

Zhou N., Zhou H., y Hoppe D. Containerization for high performance computing systems: Survey and prospects. IEEE Transactions on Software Engineering, 49(4):2722–2740, 2023. http://doi.org/10.1109/TSE.2022.3229221.

Published

2025-12-05

Issue

Section

Conference Papers in MECOM 2025