Turbulence Models as a Teaching Tool in Engineering Courses

Authors

  • César I. Pairetti Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura & Instituto de Física de Rosario (CONICET-UNR). Rosario, Argentina. https://orcid.org/0009-0003-6159-0470
  • María C. Cortizo Carbone Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Rosario, Argentina.
  • Ricardo Pendin Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Rosario, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8395

Keywords:

Models, Turbulence, Computational Fluid Dynamics

Abstract

The development and use of models is a central practice in scientific disciplines. However, in engineering training, the scope and limitations of the models applied are often not discussed in depth. This is a particularly important problem for the study of complex phenomena such as turbulence. In this work, we propose a pedagogical approach implemented in the Fluid Mechanics course of the Mechanical Engineering program. In this approach, students first develop internal flow simulations using Direct Numerical Simulation (DNS) on structured meshes and then address a wing profile aerodynamics problem using Reynolds Averaged Navier-Stokes (RANS) equations with unstructured meshes. Throughout these experiences, critical reflection is encouraged on the physical hypotheses that support the model, the mathematical approximations used to close the equations, and the meshing decisions that affect the numerical solution. The results show that students move from viewing Computational Fluid Dynamics (CFD) as a black box to considering it as a learning tool, while acquiring a deeper understanding of the interrelationship between the phenomenon, the model, and the solution method for closed problems.

References

Alomá Bello M., Crespo Díaz L.M., González Hernández K., and Estévez Pérez N. Fundamentos cognitivos y pedagógicos del aprendizaje activo. Mendive. Revista de Educación, 20(4):1353–1368, 2022.

Duraisamy K., Iaccarino G., and Xiao H. Turbulence modeling in the age of data. Annual Review of Fluid Mechanics, 51(1):357–377, 2019. http://doi.org/10.1146/annurev-fluid-010518-040547.

Hallström J., , Norström P., and Schönborn K.J. Authentic stem education through modelling: an international delphi study. International Journal of STEM Education, 10(1):62, 2023. http://doi.org/10.1186/s40594-023-00453-4.

Lammi M.D. and Denson C.D. Modeling as an engineering habit of mind and practice. Advances in Engineering Education, 6(1):n1, 2017.

Moin P. and Chan W.H.R. Fundamentals of Turbulent Flows. Cambridge University Press, 2024.

Pairetti C.I. and Rodríguez G.L. La mecánica computacional en los cursos de mecánica de fluidos: empleando cfd para actividades prácticas en modalidad taller. In Actas del Congreso Argentino de Ingeniería Mecánica (CAIM 2023). 2023.

Schiestel R. and Chaouat B. Turbulence modeling and simulation advances in cfd during the past 50 years. Comptes Rendus Mécanique, 350(51):1–29, 2022. http://doi.org/10.5802/crmeca.114.

Published

2025-12-07

Issue

Section

Conference Papers in MECOM 2025