Computational Analysis of Wind Neighborhood Effects on Buildings: A Comparison Between Closure Models for Turbulence

Autores/as

  • Paulo Ulisses Silva Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia de Estruturas. Belo Horizonte, Minas Gerais, Brazil.
  • Gustavo Bono Universidade Federal de Pernambuco, Centro Acadêmico do Agreste, Laboratório de Engenharia Computacional. Caruaru, Pernambuco, Brasil.
  • Marcelo Greco Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia de Estruturas. Belo Horizonte, Minas Gerais, Brazil.

DOI:

https://doi.org/10.70567/mc.v41i7.37

Palabras clave:

Computational fluid dynamics, aerodynamic coefficients, RANS, OpenFOAM

Resumen

Determining the neighboring effects of wind is a complex task, as generic approaches are often unable to accurately capture the interactions between buildings and their surrounding environment. For this reason, standard guidelines may be insufficient for determining these effects, making it necessary to rely on wind tunnel testing or numerical simulations through computational fluid dynamics (CFD). This study presents an analysis of the changes in aerodynamic coefficients of the CAARC (Commonwealth Advisory Aeronautical Research Council) building due to the presence of neighboring structures that interfere with wind flow. The neighborhood consists of eight blocks with proportions of 1:1:3. Turbulence was modeled using the Reynolds-Averaged Navier-Stokes (RANS) approach, employing the k-omega and k-omega SST turbulence closure models. A comparative analysis of the results obtained from these two models is presented. The study was conducted by varying the system’s orientation from 0 to 90 degrees in 15-degree intervals. Results show that the perimeter buildings create a shielding effect on the centrally located CAARC building, leading to a reduction in the drag coefficient. Additionally, for some angles, the presence of neighboring structures caused an increase in the torsional and lift coefficients.

Citas

Andersson, B., Andersson, R., Hakansson, L., Morternsen, M., Sudiyo, R., van Wachem, B. Computational Fluid Dynamics, Cambridge University Press, 2012. https://doi.org/10.1017/CBO9781139093590

Aristodemou, E., Boganegra, L. M., Mottet, L., Pavlidis, D., Constantinou, A., Pain, C., ApSimon, H. How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood. Environ Pollut, (233):782-796, 2018. https://doi.org/10.1016/j.envpol.2017.10.041

Blocken, B., Janssen, W.D., van Hooff, T. CFD. CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus. Environmental Modelling & Software, (30):15-34, 2012. https://doi.org/10.1016/j.envsoft.2011.11.009

Blocken, B., Stathopoulos, T., van Beeck, J. P. A. J. Pedestrian-level wind conditions around buildings: Review of wind-tunnel and CFD techniques and their accuracy for wind comfort assessment. Build Environ, (100):50-81, 2016. https://doi.org/10.1016/j.buildenv.2016.02.004

Dondapati, R.S., Rao, V.V. Influence of mass flow rate on Turbulent Kinetic Energy (TKE) distribution in Cable-In-Conduit Conductors (CICCs) used for fusion grade magnets. Fusion Eng Des, 88(5):341-349, 2013. https://doi.org/10.1016/j.fusengdes.2013.03.047

Franke, J., Hirsch, C., Jensen, A.G., Krüs, H.W., Schatzmann, M., Westbury, P.S., Miles, S.D., Wisse, J.A., Wright, N.G., Recommendations on the use of CFD in wind engineering. In: Proc Int Conf Urban Wind Eng Build Aerodyn, 2004, Sint-Genesius-Rode, Bélgica, 2004.

Gough, H., King, M.F., Nathan, P., Grimmond, C.S.B., Robins, A., Noakes, C.J., Luo, Z., Barlow, J.F. Influence of neighbouring structures on building façade pressures: Comparison between full-scale, wind-tunnel, CFD and practitioner guidelines. J Wind Eng Ind Aerod, (189): 22-33, 2019. https://doi.org/10.1016/j.jweia.2019.03.011

Hargreaves, D.M., Wright, N.G. On the use of the k-e model in commercial CFD software to model the neutral atmospheric boundary layer. J Wind Eng Ind Aerod, 95(5):355-369, 2007. https://doi.org/10.1016/j.jweia.2006.08.002

Hu, J., Xuan, H.B., Kwok, K.C.S., Zhang, Y., Yu. Y. Study of wind flow over a 6 m cube using improved delayed detached Eddy simulation. J Wind Eng Ind Aerod 179:463-474, 2018. https://doi.org/10.1016/j.jweia.2018.07.003

Iqbal, Q. M. Z., Chan, A. L. S. Pedestrian level wind environment assessment around group of high-rise cross-shaped buildings: Effect of building shape, separation and orientation. BuildEnviron, (101): 45-63, 2016. https://doi.org/10.1016/j.buildenv.2016.02.015

Ishida, Y., Yoshida, A., Kamata, S., Yamane, Y., & Mochida, A. Wind Tunnel Experiments on Interference Effects of a High-Rise Building on the Surrounding Low-Rise Buildings in an Urban Block. Wind, 3(1): 97-114 2023. https://doi.org/10.3390/wind3010007

Ishida, Y., Yoshida, A., Yamane, Y., & Mochida, A. Impact of a single high-rise building on the wind pressure acting on the surrounding low-rise buildings. J Wind Eng Ind Aerod, (250): 105742, 2024. https://doi.org/10.1016/j.jweia.2024.105742

Launder, B.E., Spalding, D.B. The numerical computation of turbulent flows. Comput Methods Appl Mech Eng, 3(2):269-289, 1974. https://doi.org/10.1016/0045-7825(74)90029-2

Lim, H. C., Thomas, T. G., Castro, I. P. Flow around a cube in a turbulent boundary layer: LES and experiment. J Wind Eng Ind Aerod, 97(2), 96-109, 2009. https://doi.org/10.1016/j.jweia.2009.01.001

Lin, N., Letchford, C., Tamura, Y., Liang, B., Nakamura, O. Characteristics of wind forces acting on tall buildings." J Wind Eng Ind Aerod, 93(3):217-242, 2005. https://doi.org/10.1016/j.jweia.2004.12.001

Martinuzzi, R., & Tropea, C. (1993). The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow (data bank contribution). J. Fluids Eng., 115(1):85- 92, 1993. https://doi.org/10.1115/1.2910118

Meng, F. Q., He, B. J., Zhu, J., Zhao, D. X., Darko, A., Zhao, Z. Q. Sensitivity analysis of wind pressure coefficients on CAARC standard tall buildings in CFD simulations. J Build Eng, (16): 146-158, 2018. https://doi.org/10.1016/j.jobe.2018.01.004

Melbourne, W. H. Comparison of measurements on the CAARC standard tall building model in simulated model wind flows. J Wind Eng Ind Aerod, 6(1):73-88, 1980. https://doi.org/10.1016/0167-6105(80)90023-9

Menter F.R., Kuntz, M., Langtry, R. Ten years of industrial experience with the SST turbulence model. In: Proc 4th Int Symp Turbul Heat Mass Transf, 625-632, Antalya, Turkey, 2003.

Nield, J. M., King, J., Wiggs, G. F., Leyland, J., Bryant, R. G., Chiverrell, R. C., Washington, R. Estimating aerodynamic roughness over complex surface terrain. JGR: Atmospheres, 118(23):12-948, 2013. https://doi.org/10.1002/2013JD020632

Razak, A., Hagishima, A., Ikegaya, N., & Tanimoto, J. Analysis of airflow over building arrays for assessment of urban wind environment. Build Environ, (59):56-65, 2013. https://doi.org/10.1016/j.buildenv.2012.08.007

Richards, P.J., Hoxey, R.P. Appropriate boundary conditions for computational wind engineering models using the k-e turbulence model. In: Comput Wind Eng, 1:145-153. Elsevier, 1993. https://doi.org/10.1016/B978-0-444-81688-7.50018-8

Richards, P. J., Hoxey, R. P., Short, L. J. Wind pressures on a 6 m cube. J Wind Eng Ind Aerod, 89(14-15), 1553-1564, 2001. https://doi.org/10.1016/S0167-6105(01)00139-8

Richards, P. J., Hoxey, R. P., Connell, B. D., Lander, D. P. Wind-tunnel modelling of the Silsoe Cube. J Wind Eng Ind Aerod, 95(9-11), 1384-1399, 2007. https://doi.org/10.1016/j.jweia.2007.02.005

Reynolds, O. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. PTMSFB, 186:123-164, 1895. https://doi.org/10.1098/rsta.1895.0004

Tominaga Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Masaru, Y., Shirasawa, T. AIJ guidelines for practial applications of CFD to pedestrian wind environment around buildings. J Wind Eng Ind Aerod, 96:1749-1761, 2008. https://doi.org/10.1016/j.jweia.2008.02.058

Thepmongkorn, S., Wood, G. S., Kwok, K. C. S. Interference effects on wind-induced coupled motion of a tall building. J Wind Eng Ind Aerod, 90(12):1807-1815, 2002. https://doi.org/10.1016/S0167-6105(02)00289-1

Van Doormaal, J.P., Raithby, G.D. Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows. Numer Heat Transf, 7(2), 1984. https://doi.org/10.1080/01495728408961817

Yang, Y., Gu, M., Chen, S., Jin, X. New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering. J Wind Eng Ind Aerod, 97(2):88-95, 2009. https://doi.org/10.1016/j.fishres.2008.08.003

Descargas

Publicado

2024-11-08

Número

Sección

Artículos completos del congreso MECOM 2024