Implementation of Adaptive Mesh Methodologies for the Optimization of Fluviomorphological Simulations in Opentelemac-Mascaret

Authors

  • Pablo Novara Universidad Nacional del Litoral, Facultad de Ingeniería y Ciencias Hídricas. Santa Fe, Argentina.
  • Lucas G. Dominguez Rubén Universidad Nacional del Litoral, Facultad de Ingeniería y Ciencias Hídricas, Centro de Estudios Fluviales e Hidro-Ambientales del Litoral (CEFHAL) & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Santa Fe, Argentina. https://orcid.org/0000-0003-2271-8526
  • Gerardo Franck Universidad Nacional del Litoral, Facultad de Ingeniería y Ciencias Hídricas & Aula CIMNE. Santa Fe, Argentina.
  • Graciela Scachi Universidad Nacional del Litoral, Facultad de Ingeniería y Ciencias Hídricas, Departamento de Hidráulica. Santa Fe, Argentina.
  • Alejandro Mendoza Universidad Nacional Autónoma de México, Instituto de Ingeniería. Ciudad de México, México.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8400

Keywords:

Adaptive mesh, Two-dimensional modeling, Fluviomorphological modeling

Abstract

Adaptive remeshing in CFD is one of the main strategies for optimizing the use of computational resources and reducing simulation costs. This methodology renders specially valuable when studying fluviomorphological processes in natural environments, where the time and space scales set a constant challenge for the simulation. The ability to capture phenomenons that evolve through decades confers this techniques many qualitative and quantitative advantages. In this paper we describe the design and implementation of an automatic and adaptive mesh refinement algorithm for the software package openTelemac. We present the general system operation, the remeshing criteria and the geometric algorithms applied. A laboratory channel experiment, with abundant empirical data, was used to validate the model.

References

Bank R.E., Sherman A.H., y Weiser A. Some Refinement Algorithms and Data Structures for Regular Local Mesh Refinement. En R.S. Stepleman, editor, Scientific Computing, páginas 3–17. North-Holland, Amsterdam, 1983.

Berger M.J. y Oliger J. Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics, 53(3):484–512, 1984. http://doi.org/10.1016/0021-9991(84)90073-1.

Carstensen C. An adaptive mesh-refining algorithm allowing for an h 1 stable l 2 projection onto courant finite element spaces. Constructive Approximation - CONSTR APPROX, 20:549–564, 2004. http://doi.org/10.1007/s00365-003-0550-5.

Cherfils C. y Hermeline F. Diagonal swap procedures and characterizations of 2D-Delaunay triangulations. ESAIM: Modélisation mathématique et analyse numérique, 24(5):613–625, 1990.

Deltares. Delft3D-FLOW User Manual. Deltares, Delft, The Netherlands, 2023. Version 6.03.

DHI. MIKE 21 Flow Model FM, Hydrodynamic Module, Scientific Documentation. DHIWater & Environment, Hørsholm, Denmark, 2023. MIKE Powered by DHI.

Field D.A. Laplacian smoothing and delaunay triangulations. Communications in Applied Numerical Methods, 4(6):709–712, 1988. http://doi.org/https://doi.org/10.1002/cnm.1630040603.

Hervouet M. Front Matter. John Wiley & Sons, Ltd, 2007. ISBN 9780470319628. http://doi.org/https://doi.org/10.1002/9780470319628.fmatter.

Hoppe H. Progressive meshes. En Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, página 99–108. Association for Computing Machinery, New York, NY, USA, 1996. ISBN 0897917464. http://doi.org/10.1145/237170.237216.

Langendoen E.J., Mendoza A., Abad J.D., Tassi P., Wang D., Ata R., El kadi Abderrezzak K., y Hervouet J.M. Improved numerical modeling of morphodynamics of rivers with steep banks. Advances in Water Resources, 93:4–14, 2016. ISSN 0309-1708. http://doi.org/https://doi.org/10.1016/j.advwatres.2015.04.002. Numerical modelling of river morphodynamics.

Rettenmaier D., Deising D., Ouedraogo Y., Gjonaj E., De Gersem H., Bothe D., Tropea C., y Marschall H. Load balanced 2d and 3d adaptive mesh refinement in openfoam. SoftwareX, 10:100317, 2019. ISSN 2352-7110.http://doi.org/https://doi.org/10.1016/j.softx.2019.100317.

Scacchi G. Interacción entre el flujo turbulento y los procesos de erosión junto a estribos de puentes protegidos. Estudio experimental. Tesis de Doctorado, Universidad Nacional del Litoral, Santa Fe, Argentina, 2017.

Shewchuk J.R. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. En M.C. Lin y D. Manocha, editores, Applied Computational Geometry: Towards Geometric Engineering, volumen 1148 de Lecture Notes in Computer Science, páginas 203–222. Springer-Verlag, 1996. From the First ACMWorkshop on Applied Computational Geometry.

Shewchuk J.R. Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. Theory Appl., 22(1–3):21–74, 2002. ISSN 0925-7721. http://doi.org/10.1016/S0925-7721(01)00047-5.

Sibson R. A brief description of natural neighbour interpolation. Interpreting Multivariate Data, páginas 21–36, 1981.

US Army Corps of Engineers, Hydrologic Engineering Center. HEC-RAS River Analysis System, User’s Manual. U.S. Army Corps of Engineers, Davis, CA, USA, 2021. Version 6.0.

Published

2025-12-07