Characterization and Prediction of Water Temperature in the Uruguay River: Numerical Model and Ecological Inplication in the Concepción del Uruguay – Nueva Palmira Reach
DOI:
https://doi.org/10.70567/mc.v42.ocsid8412Keywords:
Temperature water simulation, openTELEMAC-Mascaret, Uruguay RiverAbstract
The OpenTelemac-Mascaret numerical model was implemented to simulate thermal transport and its interaction with the environment along a 182 km reach of the Uruguay River, between Concepción del Uruguay and Nueva Palmira. The model was calibrated and validated using field data, showing good agreement between simulated and observed temperatures. The results allowed for the characterization of the river’s thermal regime and the evaluation of extreme temperature scenarios, making it a useful tool for predicting thermal alterations and supporting environmental management.
References
Brunt, D. Notes on radiation in the atmosphere. I. Q J R Meteorol. Soc., 58:389–420, 1932. https://doi.org/10.1002/qj.49705 824704
Brutsaert, W. On a derivable formula for long-wave radiation from clear skies. Water Resour Res., 11:742–744, 1975. https://doi.org/10.1029/WR011 i005p 00742
Delpla, I., Jung, A.V., Baures, E., Clement, M., Thomas, O., 2009. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 35, 1225– 1233
Dugdale, S.J., Franssen, J., Corey, E., Bergeron, N.E., Lapointe, M., Cunjak, R.A. Main stem movement of Atlantic salmon parr in response to high river temperature. Ecol. Freshw. Fish 25, 429–445, 2016. https://doi.org/10.1029/WR011 i005p 00742
Hannah, D.M., Garner, G. River water temperature in the United Kingdom: changes over the 20th century and possible changes over the 21st century. Prog. Phys. Geogr. 39, 68–92, 2015.
Hervouet, J. M., Hydrodynamics of free surface flows. John Wiley and Sons, Ltd, Electricite de France (EDF), France, 2007.
Junes, R. Modelo hidrodinámico del rio Uruguay Determinación de los principales patrones de flujo y su variación espacio-temporal en función de los forzantes. Msc. Tesis, Facultad de Ingeniería, Universidad de la República, Uruguay, 2020.
Kalinowska, M. Effect of water–air heat transfer on the spread of thermal pollution in rivers. Acta Geophysica, 67:597–619, 2019. https://doi.org/10.1007/s11600-019-00252-y
Muñoz-Mas, R., Lopez-Nicolas, A., Martínez-Capel, F., Pulido-Velazquez, M. Shifts in the suitable habitat available for brown trout (Salmo trutta L.) under short-term climate change scenarios. Sci. Total Environ., 544, 686–700, 2016.
Satterlund, D.R. An improved equation for estimating long-wave radiation from the atmosphere. Water Resource Res., 15:1649–1650, 1979. https://doi.org/10.1029/WR015i006p 01649
Smagorinsky J. General circulation experiments with the primitive equations. Mon Weather Rev., 1963;91:99-165, 1963.
Steel, E.A., Beechie, T.J., Torgersen, C.E., Fullerton, A.H. Envisioning, quantifying, and managing thermal regimes on river networks. Bioscience 67, 506–522, 2017.
Swinbank, WC. Long-wave radiation from clear skies. Q J R Meteorol Soc 89:339–348, 1963. https://doi.org/10.1002/qj.4970893810 5.
WAQTEL, User Manual, Version v8p5. 2023.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.

