Numerical Study of Thermal Comfort in Building Arrangements Using OpenFOAM

Authors

  • Raul César Andrade Soares Universidade Federal de Pernambuco, Centro Acadêmico do Agreste, Laboratório de Engenharia Computacional. Caruaru, Pernambuco, Brasil.
  • Paulo Ulisses Silva Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia de Estruturas. Belo Horizonte, Minas Gerais, Brazil.
  • Gustavo Bono Universidade Federal de Pernambuco, Centro Acadêmico do Agreste, Laboratório de Engenharia Computacional. Caruaru, Pernambuco, Brasil.

DOI:

https://doi.org/10.70567/mc.v41i7.38

Keywords:

Thermal comfort, CFD, OpenFOAM, Wind

Abstract

Brazil is a country with a predominantly hot climate, therefore, methods of obtaining natural ventilation should be considered as a means of achieving thermal comfort in environments. This work aims to investigate natural ventilation and thermal comfort in building arrangements, using Computational Fluid Mechanics. For this, the OpenFOAM software will be used, using the standard k-epsilon turbulence model. A 3D model of a typical residential project from the Minha Casa, Minha Vida program was evaluated, inserted into a building arrangement, thus simulating a housing complex. The Elevated Air Speed Comfort Zone method (ASHRAE, 2017) was considered to determine whether or not thermal comfort occurred. The velocity, pressure and temperature fields were resolved, and it was possible to observe that some rooms experienced thermal discomfort caused by excessive wind speed, mainly in the windward house. The leeward houses presented most of the environments within the ideal thermal comfort ranges.

References

ASHRAE Standard 55, Thermal Environmental Conditions for Human Occupancy. 2017.

Aviv, D., Chen, K.W., Teitelbaum, E., Sheppard, D., Pantelic, J., Rysaneck, A., e Meggers, F., A fresh (air) look at ventilation for COVID-19: Estimating the global energy savings potential of coupling natural ventilation with novel radiant cooling strategies. Applied Energy, Elseiver, volume 295:1 - 13, 2021. https://doi.org/10.1016/j.apenergy.2021.116848

Berry, G., Parsons, A., Morgan, M., Rickert, J., e Cho, H., A review of methods to reduce the probability of the airborne spread of COVID-19 in ventilation systems and enclosed spaces. Environmental Research, Elseiver, volume 203:1 - 12, 2021. https://doi.org/10.1016/j.envres.2021.111765

Blocken, B., LES over RANS in building simulation for outdoor and indoor applications: a foregone conclusion? Building Simulation, volume 11: 821-870, 2018. https://doi.org/10.1007/s12273-018-0459-3

Eli, L. G., Krelling, A. F., Olinger, A. P., e Lamberts, R., Thermal performance of residential building with mixed-mode and passive cooling strategies: The Brazilian context. Energy & Buildings, Elseiver, volume 244, 2021. https://doi.org/10.1016/j.enbuild.2021.111047

EPE - Empresa de Pesquisa Energética. Nota Técnica EPE 030/2018: Uso de Ar Condicionado no Setor Residencial Brasileiro. Rio de Janeiro, 2018.

EPE - Empresa de Pesquisa Energética. Estudos do Plano Decenal de Expansão de Energia 2030. Rio de Janeiro, 2020.

Frontczak, M., Schiavon S., Goins, J., Arens, E., Zhang, H., e Wargocki, P., Quantitative relationships between occupant satisfaction and satisfaction aspects of indoor environmental

quality and building design. International Journal of Indoor Environment and Health, Indoor air, Dinamarca, volume 22:119 - 131, 2011. https://doi.org/10.1111/j.1600-0668.2011.00745.x

Hooff, T.V., Blocken, B., e Tominaga, Y., On the accuracy of CFD simulations of crossventilation flows for a generic isolated building: Comparison of RANS, LES and experiments. Building and Environment, volume 114:148 - 165, 2017. https://doi.org/10.1016/j.buildenv.2016.12.019

Karava, P., Stathopoulos, T., e Athienitis, A.K., Airflow assessment in cross-ventilated buildings with operable façade elements. Building and Environment, volume 46:266-279, 2011. https://doi.org/10.1016/j.buildenv.2010.07.022

Nascimento, A.V., e Bono, G., Numerical simulation of wind-driven ventilation of a threegeneric low-rise building in various geometrical configurations. Ambiente Construído, Porto Alegre, volume 22:269-288, 2022. Projetando Edificações Energeticamente Eficientes, disponível em <http://www.mme.gov.br/projeteee/>. https://doi.org/10.1590/s1678-86212022000200606

Richards, P.J., e Hoxey, R.P., Appropriate boundary conditions for computational wind engineering models using the k-e turbulence model. Journal of Wind Engineering and Industrial Aerodynamics, volume 46 e 47: 145-153, 1993. https://doi.org/10.1016/0167-6105(93)90124-7

Sakiyama, N.R.M., Carlo, J.C., Frick, J., e Garrecht, H., Perspectives of naturally ventilated buildings: A review. Renewable and Sustainable Energy Reviews, volume 130, 2020. Schibuola, L., e Tambani, C., High energy efficiency ventilation to limit COVID-19 contagion in school environments. Energy and Buildings, Elseiver, volume 240: 1 - 14, 2021. https://doi.org/10.1016/j.enbuild.2021.110882

Soares, R.C.A., Estudo numérico da ventilação natural e conforto térmico em arranjos de edificações. Dissertação de Mestrado. Universidade Federal de Pernambuco, 2023.

Tominaga, Y., e Blocken, B., Wind tunnel experiments on cross-ventilation flow of a generic building with contaminant dispersion in unsheltered and sheltered conditions. Building and Environment, volume 92:452-461, 2015. https://doi.org/10.1016/j.buildenv.2015.05.026

Triana, M. A., Lamberts, R., e Sassi, P., Characterisation of representative building typologies for social housing projects in Brazil and its energy performance. Energy Policy. Elseiver, volume: 87: 524 - 541, 2015. https://doi.org/10.1016/j.enpol.2015.08.041

Zheng, W., Hu, J., Wang, Z., Li j., Fu, Z., Li, H., Jurasz, J., Chou, S. K., e Yan, J., COVID-19 Impact on Operation and Energy Consumption of Heating, Ventilation and Air-Conditioning(HVAC) Systems. Advances in Applied Energy, Elseiver, volume 3:1 - 25, 2021. https://doi.org/10.1016/j.adapen.2021.100040

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024