A Dynamic Stability Criterion Suitable for Cylindrical Shells under Impulsive Loads

Authors

  • Mariano P. Ameijeiras Universidad Nacional de Córdoba, FCEFyN e Instituto de Estudios Avanzados en Ingeniería y Tecnología, CONICET/UNC, Córdoba, Argentina
  • Luis A. Godoy Universidad Nacional de Córdoba, FCEFyN e Instituto de Estudios Avanzados en Ingeniería y Tecnología, CONICET/UNC, Córdoba, Argentina

DOI:

https://doi.org/10.70567/mc.v41i2.5

Keywords:

buckling, thin-walled cylindrical shells, dynamic buckling, explosions

Abstract

In the petrochemical industry, cylindrical hydrocarbon storage tanks may be subject to the effects of external explosive waves from detonations. The dynamic buckling limit state of thin shells under short-duration asymmetric loading has not been fully explored in the literature mainly due to the lack of appropriate criteria. In this work, a criterion is developed and proposed to estimate critical actions by measuring the restoring forces of the system in an integral (weak) sense. The instability results on the movement trajectory (quasi-bifurcation) published since 1977 by L.H.N Lee, serve as a basis for the analyses carried out. We work on an elastoplastic ring model that allows us to study in a simplified way the critical impulsive modes of cylindrical tanks as shown by the authors in previous publications. From this model, critical dynamic buckling loads of typical tanks in the oil industry are measured and the results are compared with numerical models by the finite element method. From the results it can be concluded that through the proposed criterion it is possible to obtain a good approximation to the dynamic buckling limit state.

References

ABAQUS (2018). User's Manual. Providence, RI: Dassault Systèmes Simulia Corp.

Ameijeiras, M.P. & Godoy L.A., Quasi-bifurcation of discrete systems with unstable postcritical behaviour under impulsive loads. In N. Challamel, J Kaplunov & I. Takewaki (Eds), Modern Trends in Structural and Solid Mechanics 1. ISTE: UK, 2021. https://doi.org/10.1002/9781119831891.ch8

Ameijeiras, M.P., Análisis de tanques de almacenamiento de petróleo bajo la acción de cargas debidas a ondas explosivas, PhD tesis, Universidad Nacional de Córdoba, Argentina, 2020.

Budiansky B., and Roth R.S., Axisymmetric dynamic buckling of clamped shallow spherical shells. In NASA TN D-1510 (Eds.), Collected Papers on Instability of Shell Structures. Washington, DC, 1962.

Duong, D.H., Hanus, J.L., Bouazaoui, L., Pennetier, O., Moriceau, J., Prod'homme, G., Reimeringer, M., Response of a tank under blast loading - Part I: Experimental characterization. European J. of Environmental and Civil Eng., 16(9), 1023-1041, 2012b. https://doi.org/10.1080/19648189.2012.699741

Duong, D.H., Hanus, J.L., Bouazaoui, L., Regal, X., Prod'homme, G., Noret, E., Yalamas, T., Reimeringer, M., Bailly, P., Pennetier, O., Response of a tank under blast loading - Part II: Experimental structural response and simplified analytical approach. European J. of Environmental and Civil Eng. 16(9), 1042-1057, 2012a. https://doi.org/10.1080/19648189.2012.699743

Flores, F.G. & Godoy, L.A., Buckling of short tanks due to hurricanes. Engineering Structures, 20 (8), 752-760, 1998. https://doi.org/10.1016/S0141-0296(97)00109-0

Flores, F.G. & Godoy, L.A., Forced vibrations of silos leading to buckling. Journal of Sound and Vibration, 224 (3), 431-454, 1999 Kleiber, M., Kotula, W. & Saran, M., Numerical analysis of dynamic quasi-bifurcation. Engineering Computations, 4: 48-52, 1987. Lee, L.H.N., Dynamic buckling of an inelastic column. Int. J. Solids Structures, 17, 271-279, 1981a. https://doi.org/10.1006/jsvi.1999.2188

Lee, L.H.N., On dynamic stability and quasi-bifurcation. Int. J. Non-Linear Mechanics, 16(1), 79-87, 1981b. https://doi.org/10.1016/0020-7462(81)90035-4

Lee, L.H.N., Quasi-bifurcation in dynamics of elastic-plastic continua. J. of Applied Mechanics, 413-418, 1977. https://doi.org/10.1115/1.3424093

Lee, L.H.N., Quasi-bifurcation of rods within an axial plastic compressive wave. J. of Applied Mechanics, 100-104, 1978. https://doi.org/10.1115/1.3424209

Lindberg H.E. & Florence A.L., Dynamic pulse buckling. Dordrecht: Martinus Nijhoff Publishers, 1987. https://doi.org/10.1007/978-94-009-3657-7

Putelat, T. and Triantafyllidis N., Dynamic stability of externally pressurized elastic rings subjeted to high rates of loading. International J. of Solids and Structures, 51. 1-12, 2014. https://doi.org/10.1016/j.ijsolstr.2013.08.002

Virella, J.C., Godoy, L.A. & Suárez, L.E., Dynamic buckling of anchored steel tanks subjected to horizontal earthquake excitation. Journal of Constructional Steel Research 62(6): 521-531, 2006. https://doi.org/10.1016/j.jcsr.2005.10.001

Weggel, D. and Whelan M. J., Rigid tank blast testing summary and procedures for estimating blast overpressure distribution on a cylindrical tank surface (Technical Report, Infrastructure Security and Emergency Responder Research and Training Facility). UNCharlotte, NC, USA: Department of Civil and Environmental Engineering, 2013.

Wolfram Research Inc., Mathematica. Champaign, IL, 2018.

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024