Comparison of Efficiency of KNL-NTS and PZT Piezoelectric Motors by the Finite Element Method

Authors

  • Juan Daniel Madrigal García Universidad Nacional de Mar del Plata, Instituto de Investigaciones Ciencia y Tecnología de Materiales (INTEMA). Mar del Plata, Argentina.
  • Leandro Ramajo Universidad Nacional de Mar del Plata, Instituto de Investigaciones Ciencia y Tecnología de Materiales (INTEMA). Mar del Plata, Argentina.
  • Federico J. Cavalieri Centro de Investigación de Métodos Computacionales (CIMEC-CONICET/UNL). Santa Fe, Argentina.
  • Nicolás Pérez Universidad de la República, Facultad de Ingeniería, Instituto de Ingeniería Eléctrica. Montevideo, Uruguay.

DOI:

https://doi.org/10.70567/mc.v41i11.57

Keywords:

lead–free piezoelectrics, linear motor, finite element method

Abstract

The restriction on the use of lead in electronic components has prompted research into new piezoelectric materials in search of alternatives to traditional lead-based materials. Potassium sodium niobate (KNN) ceramics have emerged as a promising candidate to replace lead zirconate titanate (PZT), the most commonly used material in the manufacture of piezoelectric actuators, transducers, sensors and motors. In this work, a numerical model of a linear piezoelectric motor was developed using the finite element method to compare the performance of KNN and PZT ceramics. The frequencies and vibration modes that generate the largest deformations in each material were determined. The simulation results revealed that PZT ceramic exhibits 20 times greater deformation compared to KNN. This suggests that KNN ceramic requires hardening additives to optimize displacements in lead-free piezoelectric motors.

References

Avdiaj S., etina J., y Syla N. Modeling of the piezoelectric effect using the finite-element method (fem). Materiali in tehnologije, 43(6):283-291, 2009.

Barolin S., De la Rubia M., Terny J., Rubio-Marcos F., De sanctis O., Alonso R., Fernandez Lozano F., y De Frutos J. Respuesta ferro-piezoeléctrica de (k,na,li)(nb,ta,sb)o3 poroso. Ceramica y vidrio, 53:48-52, 2014. https://doi.org/10.3989/cyv.72014

Benjeddou A. Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Computers & Structures, 76(1-3):347-363, 2000. https://doi.org/10.1016/S0045-7949(99)00151-0

Cardona A., Klapka I., y Geradin M. Design of a new finite element programming environment. Engineering Computations, 11:365-381, 1994. https://doi.org/10.1108/02644409410799344

Kim W.S., Yun C.H., y Lee S.K. Nano positioning of a high power ultrasonic linear motor. Japanese Journal of Applied Physics, 47(7R):5687, 2008. https://doi.org/10.1143/JJAP.47.5687

Saito Y., Takkao H., Tani, T. Nonoyama T., Takatori K., Homma T., Nagaya T., y Nakamura M. Lead-free piezoceramics. 432:84-87, 2004. https://doi.org/10.1038/nature03028

Xiaouan H., Pueh L.H., Jin O.C., y Piang L.S. Design and finite element analysis of a new stack ultrasonic motor based on in-plane mode. Smart Mater, 2012. https://doi.org/10.1088/0964-1726/21/11/115002

Zelikha N., Ahmed B., Malika and A. Hayet M., y A. N. Effects of thermal conditions in the phase formation of undoped and doped pb(zr1-xtix)o3 solid solutions. Materials Sciences and Applications, 4, 2013.

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024