Calculation of Contact Force in Ball Bearings Subjected to High-Frequency Impacts in the Framework of Non-Smooth Structural Dynamics

Authors

  • Eliana S. Sánchez Centro de Investigación de Métodos Computacionales (CIMEC-CONICET/UNL). Santa Fe, Argentina.
  • Alberto Cardona Centro de Investigación de Métodos Computacionales (CIMEC-CONICET/UNL). Santa Fe, Argentina.
  • Federico J. Cavalieri Centro de Investigación de Métodos Computacionales (CIMEC-CONICET/UNL) & Universidad Tecnológica Nacional, Facultad Regional Santa Fe, Grupo de Investigación en Enseñanza de la Ingeniería (GIEDI). Santa Fe, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i11.59

Abstract

This paper presents the application of the contact force calculation model proposed by the authors (E. Sánchez et al., Computational Mechanics Vol XL, 823-832, 2023) to ball bearings that experience high-frequency impacts between their components. To solve the equations of motion, the nonsmooth generalized-alpha time integration scheme is used. Additionally, to regularize the contact problem, a dual mixed formulation based on an augmented Lagrangian method is employed. The computational efficiency of the implemented algorithms is evaluated through numerical simulations of a ball bearing that has a clearance between the balls and the races, causing high-frequency impacts in various directions. Then, a crank-rod mechanism composed of rigid and flexible elements is proposed, where the link between the rod and the crank includes a ball-bearing. The numerical results obtained show how the vibrations coming from the ball-bearing affect the operation of the mechanism.

References

Alart P. y Curnier A. A mixed formulation for frictional contact problems prone to newton like solution methods. Comput. Methods Appl. Mech. Eng., 92(3):353-375, 1991. https://doi.org/10.1016/0045-7825(91)90022-X

Cosimo A., Galvez J., Cavalieri F.J., Cardona A., y Brüls O. A robust nonsmooth generalized-scheme for flexible systems with impacts. Multibody System Dyn., 48(2):127-149, 2020. https://doi.org/10.1007/s11044-019-09692-2

Deng S., Chang H., Qian D., Wang F., Hua L., y Jiang S. Nonlinear dynamic model of ball bearings with elastohydrodynamic lubrication and cage whirl motion, influences of structural sizes, and materials of cage. Nonlinear Dynamics, 110(3):2129-2163, 2022. https://doi.org/10.1007/s11071-022-07683-1

Flores P., Machado M., Silva M.T., y Martins J.M. On the continuous contact force models for soft materials in multibody dynamics. Multibody system dynamics, 25:357-375, 2011. https://doi.org/10.1007/s11044-010-9237-4

Galvez J., Cavalieri F.J., Cosimo A., Brüls O., y Cardona A. A nonsmooth frictional contact formulation for multibody system dynamics. Int. J. Numer. Methods Eng., 121(16):3584- 3609, 2020. https://doi.org/10.1002/nme.6371

Gismeros Moreno R., Marques F., Corral Abad E., Meneses Alonso J., Flores P., y Castejon C. Enhanced modelling of planar radial-loaded deep groove ball bearings with smooth-contact formulation. Multibody System Dynamics, 60(1):121-159, 2024. https://doi.org/10.1007/s11044-023-09952-2

Harris T.A. y Kotzalas M.N. Rolling Bearing Analysis-2 Volume Set. Crc Press, 2006. https://doi.org/10.1201/9781482275148

Hertz H. On the contact of elastic solids. Z Reine Angew. Math., 92:156-171, 1881. https://doi.org/10.1515/9783112342404-004

Jones A. A general theory for elastically constrained ball and radial roller bearings under arbitrary load and speed conditions. 1960. https://doi.org/10.1115/1.3662587

Nan G., Jiang S., y Yu D. Dynamic analysis of rolling ball bearing-rotor based on a new improved model. SN Applied Sciences, 4(6):173, 2022. https://doi.org/10.1007/s42452-022-05058-0

Sánchez E.S., Cavalieri F., y Cardona A. Simulación de un rodamiento de bolas inmerso en un mecanismo considerando efectos de fricción e impacto. Mecánica Computacional, 40(22):823-832, 2023.

Seely F.B. y Smith J.O. Curso superior de resistencia de materiales. 1967.

Xu L.x. A general method for impact dynamic analysis of a planar multi-body system with a rolling ball bearing joint. Nonlinear Dynamics, 78(2):857-879, 2014. https://doi.org/10.1007/s11071-014-1482-2

Yao T., Xian L., Wang L., y Liu X. Multibody contact dynamics on mechanisms with deep groove ball bearing joints. J. Sound Vib., 31:4119-4135, 2017. https://doi.org/10.1007/s12206-017-0808-7

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024