Piezo-Flexo-Electricity and Quantum Confinement: Modeling and Formulation of the Initial / Boundary Conditions Problem

Authors

  • Juan C. Barreto Universidad Nacional de Formosa, Laboratorio de Modelización y Simulación Numérica. Formosa, Argentina.
  • Javier L. Mröginski Universidad Nacional del Nordeste, Laboratorio de Mecánica Computacional, LAMEC - IMIT (CONICET). Resistencia, Chaco, Argentina
  • Mario A. Meza Universidad Nacional de Formosa, Laboratorio de Modelización y Simulación Numérica. Formosa, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i12.60

Keywords:

Piezo-flexo-electricity, dielectric polarization, quantum dots, confinement potential

Abstract

Piezo-flexo-electricity is a property of insulating materials (centro-symmetrical dielectrics), which polarize when subjected to a strain gradient and an electric field simultaneously at the nanoscale. From this perspective, and analogously, with respect to the micromechanical case, we can assume that a configurational force will appear, which will produce a residual deformation, called piezo-flexo-electric, identical to the one that appears in the classical Eshelby experiment, and that it will have a confinement effect, this fact occurs physically, giving rise to the appearance of a mechano-quantum fluctuation (quantum confinement). zero, uni, bi, or three-dimensional, in the first case we talk about quantum dots. In the present work, the constitutive equations of the piezo-flexo-electricity, its equations of motion, and the resolubility conditions of the piezo-flexo-electric system are specified.

References

Barettin D. State of the art of continuous and atomistic modeling of electromechanical properties of semiconductor quantum dots. Nanomaterials, 13(12), 2023. ISSN 2079-4991. https://doi.org/10.3390/nano13121820

Enakoutsa K., Corte A.D., y Giorgio I. A model for elastic flexoelectric materials including strain gradient effects. Mathematics and Mechanics of Solids, 21(2):242-254, 2016. https://doi.org/10.1177/1081286515588638

Hrytsyna O., Sladek J., y Sladek V. The effect of micro-inertia and flexoelectricity on love wave propagation in layered piezoelectric structures. Nanomaterials, 11(9),2079-4991, 2021. ISSN https://doi.org/10.3390/nano11092270

Hu S. y Shen S. Electric Field Gradient Theory with Surface Effect for Nano-Dielectrics. Computers, Materials & Continua, 13(1):63-88, 2009. ISSN 1546-2226.

Huang S., Qi L., HuangW., Shu L., Zhou S., y Jiang X. Flexoelectricity in dielectrics: Materials, structures and characterizations. Journal of Advanced Dielectrics, 08(02):1830002, 2018. https://doi.org/10.1142/S2010135X18300025

Li X. The Coupling between Quantum Mechanics and Elasticity. Tesis de Doctorado, Department of Mehcanical Engineering, University of Houston, 2015.

Stengel M. y Vanderbilt D. Quantum theory of mechanical deformations. Phys. Rev. B, 98:125133, 2018. https://doi.org/10.1103/PhysRevB.98.125133

Tagantsev A.K. Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B, 34:5883-5889, 1986. https://doi.org/10.1103/PhysRevB.34.5883

Tagantsev A.K. Electric polarization in crystals and its response to thermal and elastic perturbations. Phase Transitions, 35(3-4):119-203, 1991. https://doi.org/10.1080/01411599108213201

Wang B., Gu Y., Zhang S., y Chen L.Q. Flexoelectricity in solids: Progress, challenges, and perspectives. Progress in Materials Science, 106:100570, 2019. ISSN 0079-6425. https://doi.org/10.1016/j.pmatsci.2019.05.003

Zhu J., Hu P., Chen Y., Chen S., Zhang C., Wang Y., y Liu D. Waves Propagating in Nano-Layered Phononic Crystals with Flexoelectricity, Microstructure, and Micro-Inertia Effects. Nanomaterials, 12(7), 2022. ISSN 2079-4991. https://doi.org/10.3390/nano12071080

Zhuang X., Nguyen B.H., Nanthakumar S.S., Tran T.Q., Alajlan N., y Rabczuk T. Computational modeling of flexoelectricity-a review. Energies, 13(6), 2020. ISSN 1996-1073. https://doi.org/10.3390/en13061326

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024