Thermodinamically-Consistent Microplane Model for Fiber Reinforced Concrete under High Temperatures

Autores/as

  • Sonia Vrech Universidad Nacional de Tucumán, Facultad de Ciencias Exactas e Ingeniería, CEMNCI & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). San Miguel de Tucumán, Argentina.
  • Paula Folino University de Buenos Aires, Facultad de Ingeniería, Instituto INTECIN (UBA-CONICET), Laboratorio de Métodos Numéricos en Ingeniería (LMNI). Ciudad Autónoma de Buenos Aires, Argentina.
  • Marianela Ripani Universidad Nacional del Sur, Departmento de Ingeniería & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Bahía Blanca, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i12.62

Palabras clave:

Reinforced concrete, fibers, microplanes, high temperatures, concrete

Resumen

In civil engineering constructions, fiber-reinforced concrete (FRC) is one of the most used material. It is well-established that both components, fibers and concrete, experience significant degradation in their thermo-mechanical properties when are subjected to high temperatures. However, this behavior as well as its computational modeling, remain subjects of ongoing research and investigation. This work lay the foundations for a theoretical approach based on the thermodynamically-consistent Microplane Theory and Mixture Theory with the final aim to simulate the thermo-mechanical behavior of FRC under different load and temperature scenarios, obtaining comparisons of the numerical proposed theory with experimental results from the literature.

Citas

Eurocode 3. Design of steel structures - General rules - Structural fire design. In Eurocode EN 1993-1-2. 2005.

Bažant Z. and Oh B. Crack band theory for fracture of concrete. RILEM - Material Structures, 93:155-177, 1983. https://doi.org/10.1007/BF02486267

Bažant Z. and Oh B. Microplane model for progressive fracture of concrete and rock. J. of Engrg. Mechanics - ASCE, 111(4):559-582, 1985. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:4(559)

Bediwy A., Mahmoud K., and El-Salakawy E. Structural behavior of FRCC layered deep beams reinforced with GFRP headed-end bars. Engineering Structures, 243:112648, 2021. https://doi.org/10.1016/j.engstruct.2021.112648

Caggiano A., Vrech S., and Etse G. Discontinuous bifurcation of FRCC with zero-thickness interface modeling. Mechanics Research Communications, 129:104088, 2023. https://doi.org/10.1016/j.mechrescom.2023.104088

Carol I., Jirasek M., and Bažant Z. A thermodynamically consistent approach to microplane theory. Part I. Free energy and consistent microplane stresses. Int. J. of Solids and Structures, 38(17):2921-2931, 2001. https://doi.org/10.1016/S0020-7683(00)00212-2

Chen G., Yang H., Lin C., Chen J., He Y., and Zhang H. Fracture behaviour of steel fibre reinforced recycled aggregate concrete after exposure to elevated temperatures. Construction and Building Materials, 128:272-286, 2016. https://doi.org/10.1016/j.conbuildmat.2016.10.072

Coleman B. and Gurtin M. Thermodynamics with internal state variables. The Journal of Chemical Physics, 47(2):597-613, 1967. https://doi.org/10.1063/1.1711937

Coleman B. and Noll W. The thermodynamics of elastic materials with heat conduction and viscosity. Archive for Rational Mechanics and Analysis, 13(1):167-178, 1963. https://doi.org/10.1007/BF01262690

Dei Poli S., Di Prisco M., and Gambarova P. Shear response, deformations, and subgrade stiffness of a dowel bar embedded in concrete. ACI Struct. J., 89(6):665-675, 1992. https://doi.org/10.14359/9645

Dulacska H. Dowel action of reinforcement crossing cracks in concrete. ACI Struct. J., 69(12):754-757, 1972. https://doi.org/10.14359/11281

El-Ariss B. Behavior of beams with dowel action. Eng. Struct., 29(6):899-903, 2007. https://doi.org/10.1016/j.engstruct.2006.07.008

Kuhl E., Steinmann P., and Carol I. A thermodynamically consistent approach to microplane theory. Part II. Dissipation and inelastic constitutive modeling. Int. J. of Solids and Structures, 38(17):2933-2952, 2001. https://doi.org/10.1016/S0020-7683(00)00213-4

Oliver J., Linero D., Huespe A., and Manzoli O. Two-dimensional modeling of material failure in reinforced concrete by means of a continuum strong discontinuity approach. Comput. Methods Appl. Mech. Eng., 197:332-348, 2008. https://doi.org/10.1016/j.cma.2007.05.017

Ripani M., Etse G., Vrech S., and Mroginski J. Thermodynamic gradient-based poroplastic theory for concrete under high temperatures. Int. Journal of Plasticity, 61:157-177, 2014. https://doi.org/10.1016/j.ijplas.2014.06.001

Signorini C. and Nobili A. Durability of fibre-reinforced cementitious composites (FRCC) including recycled synthetic fibres and rubber aggregates. Applications in Engineering Science, 9(100077), 2021. https://doi.org/10.1016/j.apples.2021.100077

Soroushian P., Obaseki K., and Rojas M. Bearing strength and stiffness of concrete under reinforcing bars. ACI Mater. J., 84(3):179-184, 1987. https://doi.org/10.14359/1885

Truesdell C. and Toupin R. The classical field theories. In The Classical Field Theories. Handbuch der Physik, pages 226-858. Springer, 1960. https://doi.org/10.1007/978-3-642-45943-6_2

Vrech S., Ripani M., Etse G., and Folino P. Thermodynamic-consistent microplane theory for quasi brittle materials at high temperatures. Mecánica Computacional, XXXVIII:1071-1079, 2021.

Wu B., Liu Y., Feng P., and Qiu J. Cracking can make concrete stronger - The coupled effect of matrix cracking and SiO2-enhanced fiber/matrix interface healing on the tensile strength of frcc. Cement and Concrete Composites, 138:105011, 2023. https://doi.org/10.1016/j.cemconcomp.2023.105011

Wu H., Lin X., and Zhou A. A review of mechanical properties of fibre reinforced concrete at elevated temperatures. Cem. Concr. Res., 135(106117), 2020. https://doi.org/10.1016/j.cemconres.2020.106117

Zheng W., Li H., and Wang Y. Compressive stress-strain relationship of steel fiber-reinforced reactive powder concrete after exposure to elevated temperatures. Constr. Build. Mater., 35:931-940, 2012. https://doi.org/10.1016/j.conbuildmat.2012.05.031

ZhengW., Luo B., andWang Y. Compressive and tensile properties of reactive powder concrete with steel fibres at elevated temperatures. Constr. Build. Mater., 41:844-851, 2013. https://doi.org/10.1016/j.conbuildmat.2012.12.066

Zheng W., Luo B., and Wang Y. Stress-strain relationship of steel-fibre reinforced reactive powder concrete at elevated temperatures. Mater. Struct., 48:2299-2314, 2015. https://doi.org/10.1617/s11527-014-0312-9

Descargas

Publicado

2024-11-08

Número

Sección

Artículos completos del congreso MECOM 2024