A Flutter-Based Energy Harvester Device: Equations of Motion

Authors

  • Agostina C. Aichino Universidad Nacional de Córdoba, Instituto de Estudios Avanzados en Ingeniería y Tecnología (IDIT- UNC/CONICET) & Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Estructuras, Córdoba, Argentina.
  • Santiago Ribero Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Estructuras. Córdoba, Argentina.
  • Martín E. Pérez Segura Universidad Nacional de Córdoba, Instituto de Estudios Avanzados en Ingeniería y Tecnología (IDIT- UNC/CONICET) & Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Estructuras, Córdoba, Argentina.
  • Emmanuel Beltramo Universidad Nacional de Córdoba, Instituto de Estudios Avanzados en Ingeniería y Tecnología (IDIT- UNC/CONICET) & Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Estructuras, Córdoba, Argentina.
  • Marcelo Valdez Universidad Nacional de Salta, Instituto de Investigaciones en Energía No Convencional (INENCO, UNSa – CONICET). Salta, Argentina.
  • Sergio Preidikman Universidad Nacional de Córdoba, Instituto de Estudios Avanzados en Ingeniería y Tecnología (IDIT- UNC/CONICET) & Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Estructuras, Córdoba, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i13.63

Keywords:

energy havesters, flutter, equations of motion

Abstract

This paper is the first in a two-part series focused on the numerical development and integration of the equations of motion for a flutter-based energy harvesting array. The approach presented allows for modeling multiple energy harvesters arranged in spatial configurations, interacting with unsteady airflow, and coupled both aerodynamically and structurally. Each harvester in the model is characterized by six degrees of freedom, capable of experiencing significant displacements and rotations, and accommodates both rigid and elastic boundary and constraint conditions. The equations of motion are derived using a method that effectively combines Newton-Euler and Lagrangian formulations. For ease of numerical integration, these equations are represented in matrix form as a system of nonlinear, non-autonomous first-order ordinary differential equations.

References

Abdelkefi A. Aeroelastic energy harvesting: A review. International Journal of Engineering Science, 100:112-135, 2016.

https://doi.org/10.1016/j.ijengsci.2015.10.006

Beltramo E., Pérez Segura M., Roccia B., Valdez M., Verstraete M., y Preidikman S. Constructive aerodynamic interference in a network of weakly coupled flutter-based energy harvesters. Aerospace, 7(12), 2020. ISSN 2226-4310. doi:10.3390/aerospace7120167.

https://doi.org/10.3390/aerospace7120167

Kiziroglou M. y Yeatman E. Materials and techniques for energy harvesting. En J. Kilner, S. Skinner, S. Irvine, y P. Edwards, editores, Functional Materials for Sustainable Energy Applications, capítulo 17, páginas 541-572. Woodhead Publishing, 2012.

https://doi.org/10.1533/9780857096371.4.539

Roccia B., Verstraete M., Ceballos L., Balachandran B., y Preidikman S. Computational study on aerodynamically coupled piezoelectric harvesters. Journal of Intelligent Material Systems and Structures, 31(13):1578-1593, 2020. doi:10.1177/1045389X20930093.

https://doi.org/10.1177/1045389X20930093

Schaub H. y Junkins J. Analytical Mechanics of Space Systems. American Institute of Aeronautics and Astronautics, segunda edición, 2009.

https://doi.org/10.2514/4.867231

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024