Piezoelectric Energy Harvesters with Auxetic Structures

Authors

  • Santiago Bagger Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca, Grupo de Investigación en Multifísica Aplicada (GIMAP). Bahía Blanca, Argentina.
  • Santiago Krenz Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca, Grupo de Investigación en Multifísica Aplicada (GIMAP). Bahía Blanca, Argentina.
  • Mariano Febbo Universidad Nacional del Sur, Departamento de Física, Instituto de Física del Sur (IFISUR) & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Bahía Blanca, Argentina.
  • Sebastián P. Machado Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca, Grupo de Investigación en Multifísica Aplicada (GIMAP) & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Bahía Blanca, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i13.65

Keywords:

Piezoelectric Energy Harvester, PZT-5J, auxectic structure

Abstract

The efficiency of power generation in energy harvesting devices can be improved by using auxetic patterns in the substructure of the devices. Auxetic structures have positive influences on the conversion of mechanical energy into electricity due to their properties related to negative Poisson's ratio, which implies that if they are under tension in one direction, they expand in another direction and vice versa. The improved power level will be suitable for power supply of dynamic monitoring sensors. This study presents an auxetic pattern applied to beams in cantilever condition and subjected to harmonic vibration. The influence of the auxetic pattern on power generation is analyzed computationally using COMSOL Multiphysics finite element software. Furthermore, the devices with auxetic patterns are tested experimentally to evaluate the performance of the energy harvesters in comparison with the simple resonator.

References

De Bellis, M.L., Bacigalupo, A. Auxetic behavior and acoustic properties of microstructured piezoelectric strain sensors. Smart Mater. Struct. 26 (2017), 085037. https://doi.org/10.1088/1361-665X/aa7772

Eghbali, P., Younesian, D., Farhangdoust, S. Enhancement of piezoelectric vibration energy harvesting with auxetic boosters. Int. J. Energy Res. 44 (2020), 1179-1190. https://doi.org/10.1002/er.5010

Erturk A, Inman DJ. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures ;18:025009, 2009. https://doi.org/10.1088/0964-1726/18/2/025009

Evans, K.E., Nkansah, M.A., Hutchinson, I.J., Rogers, S.C. Molecular network design. Nature 353 (1991), 124. https://doi.org/10.1038/353124a0

Febbo M, Machado SP. Recolector piezoeléctrico para unidad de sensado autónomo de fuego, MECOM 2022, págs. 871-880 1-4 Noviembre, Bahía Blanca, Argentina.

Ferguson, W., Kuang, Y., Evans, K., et al. Auxetic structure for increased power output of strain vibration energy harvester, Sensors and Actuators A: Physical, Vol. 282, 15 (2018) 90-96. https://doi.org/10.1016/j.sna.2018.09.019

Gibson L.J., Ashby M.F., Schajer G.S. y Robertson C.I. The mechanics of two-dimensional cellular materials. Proc. R. Soc. Lond. A. 382 (1982) 25-42. https://doi.org/10.1098/rspa.1982.0087

Guo L, Lu Q. Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements. Renew Sustain Energy Rev.72 (2017):761-773. https://doi.org/10.1016/j.rser.2017.01.090

Khan F, Sassani F, Stoeber B. Copper foil-type vibration-based electromagnetic energy harvester. J Micromech Microeng. 20 (2010):125006. https://doi.org/10.1088/0960-1317/20/12/125006

Li, Q., Kuang, Y., Zhu, M. Auxetic piezoelectric energy harvesters for increased electric power output. AIP Adv. 7 (2017), 015104. https://doi.org/10.1063/1.4974310

Liu L, Guo X, Lee Ch. Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters, Nano Energy 88 (2021) 106304. https://doi.org/10.1016/j.nanoen.2021.106304

Lu Y, O'Riordan E, Cottone F, et al. A batch-fabricated electret-biased wideband MEMS vibration energy harvester with frequency-up conversion behavior powering a UHF wireless sensor node. J Micromech Microeng. 26 (2016): 124004. https://doi.org/10.1088/0960-1317/26/12/124004

Machado SP, Febbo M. Dispositivos autónomos para el sensado inalámbrico de máquinas agrícolas, MECOM 2023, págs. 947-956, 6-9 Noviembre, Concordia, Argentina.

Pradeesh EL, Udhayakumar S, Vasundhara MG. Klavathi GK, A review on piezoelectric energy harvesting. Microsystem Technologies, 28 (2022) 1797-1830. https://doi.org/10.1007/s00542-022-05334-4

Ramírez JM, Gatti CD, Machado SP, Febbo M. A piezoelectric energy harvester for rotating environment using a linked E-shape multi-beam. Ext. Mechanics Letters; 27 (2019) 8-19. https://doi.org/10.1016/j.eml.2018.12.005

Shahab S, Zhao S, Erturk A. Soft and hard piezoelectric ceramics and single crystals for random vibration energy harvesting. Energy Technology; 6 (2018), 935-942. https://doi.org/10.1002/ente.201700873

Shi Q, Qiu C, He T, et al. Triboelectric single-electrode-output control interface using patterned grid electrode. Nano Energy. 60 (2019):545-556. https://doi.org/10.1016/j.nanoen.2019.03.090

Umino Y, Tsukamoto S, Yamada1 K and Suzuki T. Development of vibration energy harvester with 2D mechanical metamaterial. J. Phys.: Conf. Ser. 1052 (2018) 012103. https://doi.org/10.1088/1742-6596/1052/1/012103

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024