Piezoelectric Energy Harvesters with Auxetic Structures
DOI:
https://doi.org/10.70567/mc.v41i13.65Keywords:
Piezoelectric Energy Harvester, PZT-5J, auxectic structureAbstract
The efficiency of power generation in energy harvesting devices can be improved by using auxetic patterns in the substructure of the devices. Auxetic structures have positive influences on the conversion of mechanical energy into electricity due to their properties related to negative Poisson's ratio, which implies that if they are under tension in one direction, they expand in another direction and vice versa. The improved power level will be suitable for power supply of dynamic monitoring sensors. This study presents an auxetic pattern applied to beams in cantilever condition and subjected to harmonic vibration. The influence of the auxetic pattern on power generation is analyzed computationally using COMSOL Multiphysics finite element software. Furthermore, the devices with auxetic patterns are tested experimentally to evaluate the performance of the energy harvesters in comparison with the simple resonator.
References
De Bellis, M.L., Bacigalupo, A. Auxetic behavior and acoustic properties of microstructured piezoelectric strain sensors. Smart Mater. Struct. 26 (2017), 085037. https://doi.org/10.1088/1361-665X/aa7772
Eghbali, P., Younesian, D., Farhangdoust, S. Enhancement of piezoelectric vibration energy harvesting with auxetic boosters. Int. J. Energy Res. 44 (2020), 1179-1190. https://doi.org/10.1002/er.5010
Erturk A, Inman DJ. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures ;18:025009, 2009. https://doi.org/10.1088/0964-1726/18/2/025009
Evans, K.E., Nkansah, M.A., Hutchinson, I.J., Rogers, S.C. Molecular network design. Nature 353 (1991), 124. https://doi.org/10.1038/353124a0
Febbo M, Machado SP. Recolector piezoeléctrico para unidad de sensado autónomo de fuego, MECOM 2022, págs. 871-880 1-4 Noviembre, Bahía Blanca, Argentina.
Ferguson, W., Kuang, Y., Evans, K., et al. Auxetic structure for increased power output of strain vibration energy harvester, Sensors and Actuators A: Physical, Vol. 282, 15 (2018) 90-96. https://doi.org/10.1016/j.sna.2018.09.019
Gibson L.J., Ashby M.F., Schajer G.S. y Robertson C.I. The mechanics of two-dimensional cellular materials. Proc. R. Soc. Lond. A. 382 (1982) 25-42. https://doi.org/10.1098/rspa.1982.0087
Guo L, Lu Q. Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements. Renew Sustain Energy Rev.72 (2017):761-773. https://doi.org/10.1016/j.rser.2017.01.090
Khan F, Sassani F, Stoeber B. Copper foil-type vibration-based electromagnetic energy harvester. J Micromech Microeng. 20 (2010):125006. https://doi.org/10.1088/0960-1317/20/12/125006
Li, Q., Kuang, Y., Zhu, M. Auxetic piezoelectric energy harvesters for increased electric power output. AIP Adv. 7 (2017), 015104. https://doi.org/10.1063/1.4974310
Liu L, Guo X, Lee Ch. Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters, Nano Energy 88 (2021) 106304. https://doi.org/10.1016/j.nanoen.2021.106304
Lu Y, O'Riordan E, Cottone F, et al. A batch-fabricated electret-biased wideband MEMS vibration energy harvester with frequency-up conversion behavior powering a UHF wireless sensor node. J Micromech Microeng. 26 (2016): 124004. https://doi.org/10.1088/0960-1317/26/12/124004
Machado SP, Febbo M. Dispositivos autónomos para el sensado inalámbrico de máquinas agrícolas, MECOM 2023, págs. 947-956, 6-9 Noviembre, Concordia, Argentina.
Pradeesh EL, Udhayakumar S, Vasundhara MG. Klavathi GK, A review on piezoelectric energy harvesting. Microsystem Technologies, 28 (2022) 1797-1830. https://doi.org/10.1007/s00542-022-05334-4
Ramírez JM, Gatti CD, Machado SP, Febbo M. A piezoelectric energy harvester for rotating environment using a linked E-shape multi-beam. Ext. Mechanics Letters; 27 (2019) 8-19. https://doi.org/10.1016/j.eml.2018.12.005
Shahab S, Zhao S, Erturk A. Soft and hard piezoelectric ceramics and single crystals for random vibration energy harvesting. Energy Technology; 6 (2018), 935-942. https://doi.org/10.1002/ente.201700873
Shi Q, Qiu C, He T, et al. Triboelectric single-electrode-output control interface using patterned grid electrode. Nano Energy. 60 (2019):545-556. https://doi.org/10.1016/j.nanoen.2019.03.090
Umino Y, Tsukamoto S, Yamada1 K and Suzuki T. Development of vibration energy harvester with 2D mechanical metamaterial. J. Phys.: Conf. Ser. 1052 (2018) 012103. https://doi.org/10.1088/1742-6596/1052/1/012103
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.