Characterisation and Modelling of an Experimental Parametric Pendulum System for the Application of Control Strategies

Authors

  • Lucas Oxarango Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca, Grupo de Investigación en Multifísica Aplicada (GIMAP) & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Bahía Blanca, Argentina.
  • Juan Nicolás Virla Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca, Grupo de Investigación en Multifísica Aplicada (GIMAP) & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Bahía Blanca, Argentina.
  • Lisandro M. Rojas Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca, Grupo de Investigación en Multifísica Aplicada (GIMAP) & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Bahía Blanca, Argentina.
  • Franco E. Dotti Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca, Grupo de Investigación en Multifísica Aplicada (GIMAP) & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Bahía Blanca, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i14.70

Keywords:

Nonlinear dynamics, experimental system, parametric pendulum

Abstract

This paper studies and characterizes the stationary responses of a complex experimental system consisting of a reciprocating exciter and a multi-mass pendulum. The proposed model is based on the interaction between the exciter system and the pendulum, taking into account the structure composed of multiple oscillators, as well as analyzing the behavior of the system and the interaction of its components. The characteristic parameters are estimated from the comparison of experimental measurements with numerical simulations. The objective of the work is to identify parameter configurations that allow the proposed model to resemble previously obtained experimental observations.

References

Bishop S. y Clifford M. Zones of chaotic behaviour in the parametrically excited pendulum. Journal of Sound and Vibration, 189(1):142-147, 1996. ISSN 0022-460X. https://doi.org/10.1006/jsvi.1996.0011

Clifford M. y Bishop S. Rotating periodic orbits of the parametrically excited pendulum. Physics Letters A, 201(2):191-196, 1995. ISSN 0375-9601. https://doi.org/10.1016/0375-9601(95)00255-2

de Paula A., Savi M., Wiercigroch M., y Pavlovskaia E. Bifurcation control of a parametric pendulum. International Journal of Bifurcation and Chaos, 22:1250111, 2012. https://doi.org/10.1142/S0218127412501118

Dotti F., Reguera F., y Machado S. Rotations of the Parametric Pendulum Excited by a Reciprocating Motion with a View on Energy Harvesting: Selected Papers of the XVII International Symposium on Dynamic Problems of Mechanics, páginas 385-397. 2019a. ISBN 978-3-319-91216-5. https://doi.org/10.1007/978-3-319-91217-2_27

Dotti F. y Virla J.N. Nonlinear dynamics of the parametric pendulum with a view on wave energy harvesting applications. Journal of Computational and Nonlinear Dynamics, 16, 2021. https://doi.org/10.1115/1.4050699

Dotti F.E., Luna S.A., Oxarango L., Virla J.N., y Rojas L.M. Experimental rotation control of the parametric pendulum using a velocity approach. Mechanics Research Communications, 129:104085, 2023. ISSN 0093-6413. https://doi.org/10.1016/j.mechrescom.2023.104085

Dotti F.E., Reguera F., y Machado S.P. Rotations of the parametric pendulum excited by a reciprocating motion with a view on energy harvesting. En A.d.T. Fleury, D.A. Rade, y P.R.G. Kurka, editores, Proceedings of DINAME 2017, páginas 385-397. Springer International Publishing, Cham, 2019b. ISBN 978-3-319-91217-2. https://doi.org/10.1007/978-3-319-91217-2_27

Garira W. y Bishop S. Rotating solutions of the parametrically excited pendulum. Journal of Sound and Vibration, 263:233,239, 2003. https://doi.org/10.1016/S0022-460X(02)01435-9

Najdecka A., Narayanan S., y Wiercigroch M. Rotary motion of the parametric and planar pendulum under stochastic wave excitation. International Journal of Non-Linear Mechanics, 71:30-38, 2015. ISSN 0020-7462. https://doi.org/10.1016/j.ijnonlinmec.2014.12.008

Nandakumar K., Wiercigroch M., y Chatterjee A. Optimum energy extraction from rotational motion in a parametrically excited pendulum. Mechanics Research Communications, 43:7- 14, 2012. ISSN 0093-6413. https://doi.org/10.1016/j.mechrescom.2012.03.003

Vaziri V., Najdecka A., y Wiercigroch M. Experimental control for initiating and maintaining rotation of parametric pendulum. The European Physical Journal Special Topics, 223:795- 812, 2014. https://doi.org/10.1140/epjst/e2014-02141-y

Wiercigroch M. A new concept of energy extraction from waves via parametric pendulor. UK patent application, 2010.

Xu X., Pavlovskaia E., Wiercigroch M., Romeo F., y Lenci S. Dynamic interactions between parametric pendulum and electrodynamical shaker. ZAMM Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 87:172 - 186, 2007. https://doi.org/10.1002/zamm.200610311

Yurchenko D. y Alevras P. Dynamics of the n-pendulum and its application to a wave energy converter concept. International Journal of Dynamics and Control, 1, 2013. https://doi.org/10.1007/s40435-013-0033-x

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024