Simulation of a Parametric Pendulum Wave Energy Converter with a View to its Implementation in the Bahía Blanca Estuary
DOI:
https://doi.org/10.70567/mc.v41i14.74Keywords:
Parametric pendulum, wave energy, nonlinear dynamicsAbstract
A mathematical model of a wave converter system composed of a parametrically excited pendulum wheel and a three-phase generator attached to its pivot axis is presented. The model allows addressing the dynamics of the coupled electromechanical system, also considering the rectification electronics. The applied forcing corresponds to a simplification of that generated by the motion of the waves, which is quantified from measurements in the Bahía Blanca estuary. The main objective of the study is to establish the relationship between the geometry of the pendulum wheel and the generated electrical power. It also aims to establish forcing ranges within which rotational responses of the pendulum are possible.
References
Clifford M. y Bishop S. Rotating periodic orbits of the parametrically excited pendulum. Physics Letters A, 201(2-3):191-196, 1995. https://doi.org/10.1016/0375-9601(95)00255-2
Dotti F.E., Reguera F., y Machado S.P. A review on the nonlinear dynamics of pendulum systems for energy harvesting from ocean waves. PANACM, páginas 1516-1529, 2015.
Dotti F.E., Rojas L.M., Oxarango L., Virla J.N., Vera C.A., y Machado S.P. Mediciones de oleaje y viento en el km 28 del canal principal del estuario de bahía blanca. Informe técnico IT23-0003, Grupo de Investigación en Multifísica Aplicada, Bahía Blanca, Argentina, 2023.
Dotti F.E. y Virla J.N. Nonlinear dynamics of the parametric pendulum with a view on wave energy harvesting applications. Journal of Computational and Nonlinear Dynamics, 16(6), 2021. https://doi.org/10.1115/1.4050699
Koch B. y Leven R. Subharmonic and homoclinic bifurcations in a parametrically forced pendulum. Physica D: Nonlinear Phenomena, 16(1):1-13, 1985. https://doi.org/10.1016/0167-2789(85)90082-X
Lenci S. y Rega G. Competing dynamic solutions in a parametrically excited pendulum: attractor robustness and basin integrity. 2008. https://doi.org/10.1115/1.2960468
Liu Y., Zhu H., y Xu B. Mathematical modelling and control of bearingless brushless direct current machine with motor and generator double modes for flywheel battery. IET Power Electronics, 15(13):1249-1263, 2022. https://doi.org/10.1049/pel2.12295
Nandakumar K., Wiercigroch M., y Chatterjee A. Optimum energy extraction from rotational motion in a parametrically excited pendulum. Mechanics Research Communications, 43:7-14, 2012. https://doi.org/10.1016/j.mechrescom.2012.03.003
Perillo G.M. y Piccolo M.C. Geomorphological and physical characteristics of the bahía blanca estuary, argentina. En Estuaries of South America: their geomorphology and dynamics, páginas 195-216. Springer, 1999. https://doi.org/10.1007/978-3-642-60131-6_9
Rojas L.M. y Dotti F.E. Prediseño de un convertidor de energía undimotriz basado en la dinámica del péndulo paramétrico para una aplicación a pequeña escala en ambiente real. Mecánica Computacional, 39(2):87-96, 2022. https://doi.org/10.33414/ajea.1116.2022
Umans S.D. Electric Machinery, 7th ed. McGraw Hill, 2003.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.