A Mixed Formulation for the Fractional Poisson Problem

Authors

  • Wilfredo Angulo Pontificia Universidad Católica del Ecuador, Facultad de Ciencias Exactas y Naturales. Quito, Ecuador.
  • Juan Pablo Borthagaray Universidad de la República, Facultad de Ingeniería & Programa de Desarrollo de las Ciencias Básicas (PEDECIBA). Montevideo, Departamento de Montevideo, Uruguay.
  • Nahuel de León Universidad de la República, Facultad de Ingeniería & Programa de Desarrollo de las Ciencias Básicas (PEDECIBA). Montevideo, Departamento de Montevideo, Uruguay.

DOI:

https://doi.org/10.70567/mc.v41i15.77

Keywords:

Fractional laplacian, mixed formulation, finite element method

Abstract

The mixed formulation of the classical Poisson problem consists in the introduction of a
flux as a new variable with adequate boundary conditions, resulting in a system of coupled equation system.
Using fractional calculus identities, in this work we explore a mixed formulation of the fractional
Poisson problem and prove the well-posedness of the problem. A direct discretization of this problem
seems out of reach, by following Hughes and Masud we are able to introduce a stabilized formulation
that results in a coercive and well-posed problem. The coercivity implies that any confirming finite element
discretization is stable. Lastly, we prove the convergence of this discretization and discuss its
implementations.

References

Acosta G. and Borthagaray J.P. A fractional laplace equation: regularity of solutions and finite element approximations. SIAM Journal on Numerical Analysis, 55(2):472-495, 2017. https://doi.org/10.1137/15M1033952

Boffi D., Brezzi F., and Fortin M. Mixed finite element methods and applications, volume 44 of Springer Ser. Comput. Math. Berlin: Springer, 2013. ISBN 978-3-642-36518-8; 978-3-642-36519-5.

Borthagaray J.P. and Nochetto R.H. Besov regularity for the Dirichlet integral fractional Laplacian in Lipschitz domains. J. Funct. Anal., 284(6):33, 2023. ISSN 0022-1236. https://doi.org/10.1016/j.jfa.2022.109829

Borthagaray J.P., Nochetto R.H., and Salgado A.J. Weighted sobolev regularity and rate of approximation of the obstacle problem for the integral fractional laplacian. 2019. https://doi.org/10.1142/S021820251950057X

Buades A., Coll B., and Morel J.M. Image denoising methods. a new nonlocal principle. SIAM review, 52(1):113-147, 2010. https://doi.org/10.1137/090773908

Carr P., Geman H., Madan D., and Yor M. The fine structure of asset returns: An empirical investigation. The Journal of Business, 75(2):305-332, 2002. ISSN 00219398, 15375374. https://doi.org/10.1086/338705

Chen Z. and Nochetto R.H. Residual type a posteriori error estimates for elliptic obstacle problems. Numerische Mathematik, 84:527-548, 2000. https://doi.org/10.1007/s002110050009

Comi G.E. and Stefani G. A distributional approach to fractional Sobolev spaces and fractional variation: existence of blow-up. J. Funct. Anal., 277(10):3373-3435, 2019. ISSN 0022-1236. https://doi.org/10.1016/j.jfa.2019.03.011

Constantin P. andWu J. Behavior of solutions of 2d quasi-geostrophic equations. SIAM journal on mathematical analysis, 30(5):937-948, 1999. https://doi.org/10.1137/S0036141098337333

Daoud M. and Laamri E.H. Fractional laplacians: A short survey. Discrete & Continuous Dynamical Systems-S, 15(1):95-116, 2022. https://doi.org/10.3934/dcdss.2021027

De Pablo A., Quirós F., Rodríguez A., and Vázquez J.L. A general fractional porous medium equation. Communications on Pure and Applied Mathematics, 65(9):1242-1284, 2012. https://doi.org/10.1002/cpa.21408

D'Elia M., Gulian M., Mengesha T., and Scott J.M. Connections between nonlocal operators: from vector calculus identities to a fractional helmholtz decomposition. 2021a. https://doi.org/10.2172/1855046

D'Elia M., Gulian M., Olson H., and Karniadakis G.E. Towards a unified theory of fractional and nonlocal vector calculus. 2021b. https://doi.org/10.2172/1841821

Di Nezza E., Palatucci G., and Valdinoci E. Hitchhiker's guide to the fractional sobolev spaces. Bulletin des sciences mathématiques, 136(5):521-573, 2012. https://doi.org/10.1016/j.bulsci.2011.12.004

Edmunds D.E. and EvansW.D. Fractional Sobolev spaces and inequalities, volume 230. Cambridge University Press, 2022. https://doi.org/10.1017/9781009254625

Gilboa G. and Osher S. Nonlocal linear image regularization and supervised segmentation. Multiscale Modeling & Simulation, 6(2):595-630, 2007. https://doi.org/10.1137/060669358

Lischke A., Pang G., Gulian M., Song F., Glusa C., Zheng X., Mao Z., Cai W., Meerschaert M.M., Ainsworth M., and Karniadakis G.E. What is the fractional laplacian? 2019.

Lou Y., Zhang X., Osher S., and Bertozzi A. Image recovery via nonlocal operators. Journal of Scientific Computing, 42(2):185-197, 2010. https://doi.org/10.1007/s10915-009-9320-2

Lu F., An Q., and Yu Y. Nonparametric learning of kernels in nonlocal operators. 2022.

Masud A. and Hughes T.J.R. A stabilized mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Eng., 191(39-40):4341-4370, 2002. ISSN 0045-7825. https://doi.org/10.1016/S0045-7825(02)00371-7

Rosasco L., Belkin M., and Vito E.D. On learning with integral operators. Journal of Machine Learning Research, 11(30):905-934, 2010.

Schekochihin A.A., Cowley S.C., and Yousef T.A. Mhd turbulence: Nonlocal, anisotropic, nonuniversal? In IUTAM Symposium on Computational Physics and New Perspectives in Turbulence: Proceedings of the IUTAM Symposium on Computational Physics and New Perspectives in Turbulence, Nagoya University, Nagoya, Japan, September, 11-14, 2006, pages 347-354. Springer, 2008. https://doi.org/10.1007/978-1-4020-6472-2_52

Shieh T.T. and Spector D.E. On a new class of fractional partial differential equations. Adv. Calc. Var., 8(4):321-336, 2015. ISSN 1864-8258. https://doi.org/10.1515/acv-2014-0009

Treeby B.E. and Cox B.T. Modeling power law absorption and dispersion for acoustic propagation using the fractional laplacian. The Journal of the Acoustical Society of America, 127(5):2741-2748, 2010. https://doi.org/10.1121/1.3377056

Wei Y., Kang Y., Yin W., and Wang Y. Generalization of the gradient method with fractional order gradient direction. Journal of the Franklin Institute, 357(4):2514-2532, 2020. https://doi.org/10.1016/j.jfranklin.2020.01.008

Yamamoto M. Asymptotic expansion of solutions to the dissipative equation with fractional laplacian. SIAM Journal on Mathematical Analysis, 44(6):3786-3805, 2012. https://doi.org/10.1137/120873200

Published

2024-11-08