A Model-Based Control Strategy for Production of High Acrylonitrile Content Nitrile-Butadiene Rubber (NBR)

Authors

  • Carlos I. Sanseverinatti Universidad Tecnológica Nacional, Facultad Regional Santa Fe, Centro de Investigación y Desarrollo en Ingeniería Eléctrica y Sistemas Eléctricos (CIESE) & Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET). Santa Fe, Argentina.
  • Luis A. Clementi Universidad Tecnológica Nacional, Facultad Regional Santa Fe, Centro de Investigación y Desarrollo en Ingeniería Eléctrica y Sistemas Eléctricos (CIESE). Santa Fe, Argentina. & Instituto de Investigación y Desarrollo en Bioingeniería(IBB, UNER-CONICET). Oro Verde, Argentina.
  • Jorge R. Vega Universidad Tecnológica Nacional, Facultad Regional Santa Fe, Centro de Investigación y Desarrollo en Ingeniería Eléctrica y Sistemas Eléctricos (CIESE) & Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET). Santa Fe, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i16.87

Keywords:

Soft sensors, batch processes, recurrent neuronal networks, NBR rubber

Abstract

High A-content NBR (nitrile-butadiene rubber) is typically produced through emulsion copolymerization of acrylonitrile and butadiene. Production is carried out above the “azeotropic point,” where the process can become unstable, hindering uniform product quality. Limitations in online copolymer composition measurements restrict closed-loop control strategies for process stability. This study proposes a closed-loop control strategy to adjust copolymer composition during operation above the azeotropic point. Based on a first-principles model, a recurrent neural network inferential sensor estimates composition online, enabling closed-loop control via B dosing throughout the process. Results demonstrate acceptable control methodology performance, ensuring stable conditions and uniform composition, even with significant modeling errors.

References

Clementi, L. A., Suvire, R. B., Rossomando, F.G., and Vega, J.R., A Closed-Loop Control Strategy for Producing Nitrile Rubber of Uniform Chemical Composition in a Semibatch Reactor: A Simulation Study. Macro-molecular Reaction Engineering, 12:1700054, 2018. https://doi.org/10.1002/mren.201700054

Grimm, D. C. (1998). Method for the Production of Nitrile rubber. U.S. Patent: No. 5708132.

Ji, C., Ma, F., Wang, J., and Sun W., Profitability related industrial-scale batch processes monitoring via deep learning based soft sensor development. Computers & Chemical Engineering, 170:108125, 2023. https://doi.org/10.1016/j.compchemeng.2022.108125

Lei, Y., Karimi, H. R., and Chen, X., A novel self-supervised deep LSTM network for industrial temperature prediction in aluminum processes application. Neurocomputing, 502:177-185, 2022. https://doi.org/10.1016/j.neucom.2022.06.080

Lightsey, J. W. (1998). Continuous Polymerization Process for Producing NBR Rubber having a High Bound Content of Acrylontrile. U.S. Patent: No. 5770660.

Mowbray, M., Kay, H., Kay, S., Castro Caetano, P., Hicks, A., Mendoza, C., Lane, A., Martin, P., and Zhang, D., Probabilistic machine learning based soft-sensors for product quality prediction in batch processes. Chemometrics and Intelligent Laboratory Systems, 228:104616, 2022. https://doi.org/10.1016/j.chemolab.2022.104616

Qiu, K., Wang, J., Zhou, X., Wang, R., and Guo, Y., Soft sensor based on localized semisupervised relevance vector machine for penicillin fermentation process with asymmetric data. Measurement, 202:111823, 2022. https://doi.org/10.1016/j.measurement.2022.111823

Qiu, K., Wang, J., Wang, R., Guo, Y., and Zhao, L., Soft sensor development based on kernel dynamic time warping and a relevant vector machine for unequal-length batch processes. Expert Systems with Applications, 182:115223, 2021. https://doi.org/10.1016/j.eswa.2021.115223

Ren, J., Ni, D., A batch-wise LSTM-encoder decoder network for batch process monitoring. Chemical Engineering Research and Design, 164:102-112, 2020. https://doi.org/10.1016/j.cherd.2020.09.019

Shokry, A., Vicente, P., Escudero, G., Pérez-Moya, M., Graells, M., and Espuña, A., Datadriven soft-sensors for online monitoring of batch processes with different initial conditions. Computers & Chemical Engineering, 118:159-179, 2018. https://doi.org/10.1016/j.compchemeng.2018.07.014

Vega, J.R., Gugliotta, L., Bielsa, R., Brandolini, M., and Meira, G., Emulsion copolymerization of acrylonitrile and butadiene. Mathematical model of an industrial reactor. Ind. Eng. Chem. Res, 36:1238-1246, 1998. https://doi.org/10.1021/ie9605342

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024