Numerical Model of Bone Remodeling Applied to the Human Femur to Demonstrate the Importance of Hip Prosthesis Geometric Design

Authors

  • Feliciano Franco Universidad Nacional de Entre Ríos, Facultad de Ingeniería, Grupo de Biomecánica Computacional & Instituto de Investigación en Bioingeniería y Bioinformática. Oro Verde, Argentina.
  • Diego M. Campana Universidad Nacional de Entre Ríos, Facultad de Ingeniería, Grupo de Biomecánica Computacional & Instituto de Investigación en Bioingeniería y Bioinformática. Oro Verde, Argentina.
  • Marcelo E. Berli Universidad Nacional de Entre Ríos, Facultad de Ingeniería, Grupo de Biomecánica Computacional. Oro Verde, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i17.88

Keywords:

bone remodeling, hip implant, finite element, stress shielding

Abstract

Numerical models predicting the mechanical effect of hip prostheses on human bone often consider the bone as a static material, unchanging in the presence of the implant. This limits their longterm predictive capacity at the tissue level, raising doubts about the mechanical success of the prosthesis design. For a comprehensive analysis of the implant and its effect on the recipient bone, a model is needed that reflects the biological adaptation of the tissue through bone remodeling. While some studies have implemented remodeling models, they do not address a three-dimensional analysis that includes implant-bone interaction with contact boundary conditions and a model capable of predicting physiologically possible internal bone densities. This work presents a bone remodeling model of the human femur, applied to the analysis of implanted hip prostheses, with a contact model between bone and implant. The results highlight the importance of the geometric design of the implant on the long-term evolution of bone mass.

References

Arabmotlagh M., Hennigs T., y Rittmeister M. Periprothetischer knochenumbau am proximalen femur nach implantation von individual- und standard-hüftendoprothesen. Zeitschrift für Orthopädie und ihre Grenzgebiete, 141(05):519-525, 2003. https://doi.org/10.1055/s-2003-42837

Avval P.T., Klika V., y Bougherara H. Predicting bone remodeling in response to total hip arthroplasty: Computational study using mechanobiochemical model. Journal of Biomechanical Engineering, 136(5), 2014. https://doi.org/10.1115/1.4026642

Barthassat E., Afifi F., Konala P., Rasch H., y Hirschmann M.T. Evaluation of patients with painful total hip arthroplasty using combined single photon emission tomography and conventional computerized tomography (SPECT/CT) - a comparison of semi-quantitative versus 3d volumetric quantitative measurements. BMC Medical Imaging, 17(1), 2017. https://doi.org/10.1186/s12880-017-0204-x

Bergmann G., Deuretzbacher G., Heller M., Graichen F., Rohlmann A., Strauss J., y Duda G. Hip contact forces and gait patterns from routine activities. Journal of Biomechanics, 34(7):859-871, 2001. https://doi.org/10.1016/S0021-9290(01)00040-9

Berli M., Borau C., Decco O., Adams G., Cook R.B., Aznar J.M.G., y Zioupos P. Localized tissue mineralization regulated by bone remodelling: A computational approach. PLOS ONE, 12(3):e0173228, 2017. https://doi.org/10.1371/journal.pone.0173228

Berli M.E., Franco F., Di Paolo J., Zioupos P., y Borau C. The interplay between BMU activity linked to mechanical stress, specific surface and inhibitory theory dictate bone mass distribution: Predictions from a 3d computational model. Computers in Biology and Medicine, 148:105898, 2022. https://doi.org/10.1016/j.compbiomed.2022.105898

Davis J.T. y Rudloff M.I. Posttraumatic arthritis after intra-articular distal femur and proximal tibia fractures. Orthopedic Clinics of North America, 50(4):445-459, 2019. https://doi.org/10.1016/j.ocl.2019.06.002

Davis S.R., Lambrinoudaki I., Lumsden M., Mishra G.D., Pal L., Rees M., Santoro N., y Simoncini T. Menopause. Nature Reviews Disease Primers, 1(1), 2015. https://doi.org/10.1038/nrdp.2015.4

Ferguson R.J., Palmer A.J., Taylor A., Porter M.L., Malchau H., y Glyn-Jones S. Hip replacement. The Lancet, 392(10158):1662-1671, 2018. https://doi.org/10.1016/S0140-6736(18)31777-X

Franco F., Borau Zamora C., Campana D.M., y Berli M.E. Computational analysis of the influence of menopause and ageing on bone mineral density, exploring the impact of bone turnover and focal bone balance-a study on overload and underload scenarios. Life, 13(11):2155, 2023. ISSN 2075-1729. https://doi.org/10.3390/life13112155

Frost H.M. Bone "mass" and the "mechanostat": A proposal. The Anatomical Record, 219(1):1-9, 1987. ISSN 1097-0185. https://doi.org/10.1002/ar.1092190104

Gustafsson T., Stenberg R., y Videman J. On nitsche's method for elastic contact problems.SIAM Journal on Scientific Computing, 42(2):B425-B446, 2020. https://doi.org/10.1137/19M1246869

Hernandez C., Beaupré G., Keller T., y Carter D. The influence of bone volume fractionand ash fraction on bone strength and modulus. Bone, 29(1):74-78, 2001. https://doi.org/10.1016/S8756-3282(01)00467-7

Martínez-Reina J., García-Aznar J., Domínguez J., y Doblaré M. On the role of bone damage in calcium homeostasis. Journal of Theoretical Biology, 254(3):704-712, 2008. https://doi.org/10.1016/j.jtbi.2008.06.007

Martínez-Reina J., Ojeda J., y Mayo J. On the use of bone remodelling models to estimate the density distribution of bones. uniqueness of the solution. PLOS ONE, 11(2):e0148603, 2016. https://doi.org/10.1371/journal.pone.0148603

Mikic B. y Carter D. Bone strain gage data and theoretical models of functional adaptation. Journal of Biomechanics, 28(4):465-469, 1995. ISSN 0021-9290. https://doi.org/10.1016/0021-9290(94)00085-I

Moya-Angeler J. Current concepts on osteonecrosis of the femoral head. World Journal of Orthopedics, 6(8):590, 2015. https://doi.org/10.5312/wjo.v6.i8.590

Petheram T.G., Whitehouse S.L., Kazi H.A., Hubble M.J.W., Timperley A.J., Wilson M.J., y Howell J.R. The exeter universal cemented femoral stem at 20 to 25 years. The Bone and Joint Journal, 98-B(11):1441-1449, 2016. https://doi.org/10.1302/0301-620X.98B11.37668

Savio D. y Bagno A. When the total hip replacement fails: A review on the stress-shielding effect. Processes, 10(3):612, 2022. https://doi.org/10.3390/pr10030612

Weinans H., Huiskes R., Rietbergen B.V., Sumner D.R., Turner T.M., y Galante J.O. Adaptive bone remodeling around bonded noncemented total hip arthroplasty: A comparison between animal experiments and computer simulation. Journal of Orthopaedic Research, 11(4):500-513, 1993. https://doi.org/10.1002/jor.1100110405

Westerman R.W., Whitehouse S.L., Hubble M.J.W., Timperley A.J., Howell J.R., yWilson M.J. The exeter v40 cemented femoral component at a minimum 10-year follow-up. The Bone and Joint Journal, 100-B(8):1002-1009, 2018. https://doi.org/10.1302/0301-620X.100B8.BJJ-2017-1535.R1

Published

2024-11-08