Numerical Model of Bone Remodeling Applied to the Human Femur to Demonstrate the Importance of Hip Prosthesis Geometric Design
DOI:
https://doi.org/10.70567/mc.v41i17.88Keywords:
bone remodeling, hip implant, finite element, stress shieldingAbstract
Numerical models predicting the mechanical effect of hip prostheses on human bone often consider the bone as a static material, unchanging in the presence of the implant. This limits their longterm predictive capacity at the tissue level, raising doubts about the mechanical success of the prosthesis design. For a comprehensive analysis of the implant and its effect on the recipient bone, a model is needed that reflects the biological adaptation of the tissue through bone remodeling. While some studies have implemented remodeling models, they do not address a three-dimensional analysis that includes implant-bone interaction with contact boundary conditions and a model capable of predicting physiologically possible internal bone densities. This work presents a bone remodeling model of the human femur, applied to the analysis of implanted hip prostheses, with a contact model between bone and implant. The results highlight the importance of the geometric design of the implant on the long-term evolution of bone mass.
References
Arabmotlagh M., Hennigs T., y Rittmeister M. Periprothetischer knochenumbau am proximalen femur nach implantation von individual- und standard-hüftendoprothesen. Zeitschrift für Orthopädie und ihre Grenzgebiete, 141(05):519-525, 2003. https://doi.org/10.1055/s-2003-42837
Avval P.T., Klika V., y Bougherara H. Predicting bone remodeling in response to total hip arthroplasty: Computational study using mechanobiochemical model. Journal of Biomechanical Engineering, 136(5), 2014. https://doi.org/10.1115/1.4026642
Barthassat E., Afifi F., Konala P., Rasch H., y Hirschmann M.T. Evaluation of patients with painful total hip arthroplasty using combined single photon emission tomography and conventional computerized tomography (SPECT/CT) - a comparison of semi-quantitative versus 3d volumetric quantitative measurements. BMC Medical Imaging, 17(1), 2017. https://doi.org/10.1186/s12880-017-0204-x
Bergmann G., Deuretzbacher G., Heller M., Graichen F., Rohlmann A., Strauss J., y Duda G. Hip contact forces and gait patterns from routine activities. Journal of Biomechanics, 34(7):859-871, 2001. https://doi.org/10.1016/S0021-9290(01)00040-9
Berli M., Borau C., Decco O., Adams G., Cook R.B., Aznar J.M.G., y Zioupos P. Localized tissue mineralization regulated by bone remodelling: A computational approach. PLOS ONE, 12(3):e0173228, 2017. https://doi.org/10.1371/journal.pone.0173228
Berli M.E., Franco F., Di Paolo J., Zioupos P., y Borau C. The interplay between BMU activity linked to mechanical stress, specific surface and inhibitory theory dictate bone mass distribution: Predictions from a 3d computational model. Computers in Biology and Medicine, 148:105898, 2022. https://doi.org/10.1016/j.compbiomed.2022.105898
Davis J.T. y Rudloff M.I. Posttraumatic arthritis after intra-articular distal femur and proximal tibia fractures. Orthopedic Clinics of North America, 50(4):445-459, 2019. https://doi.org/10.1016/j.ocl.2019.06.002
Davis S.R., Lambrinoudaki I., Lumsden M., Mishra G.D., Pal L., Rees M., Santoro N., y Simoncini T. Menopause. Nature Reviews Disease Primers, 1(1), 2015. https://doi.org/10.1038/nrdp.2015.4
Ferguson R.J., Palmer A.J., Taylor A., Porter M.L., Malchau H., y Glyn-Jones S. Hip replacement. The Lancet, 392(10158):1662-1671, 2018. https://doi.org/10.1016/S0140-6736(18)31777-X
Franco F., Borau Zamora C., Campana D.M., y Berli M.E. Computational analysis of the influence of menopause and ageing on bone mineral density, exploring the impact of bone turnover and focal bone balance-a study on overload and underload scenarios. Life, 13(11):2155, 2023. ISSN 2075-1729. https://doi.org/10.3390/life13112155
Frost H.M. Bone "mass" and the "mechanostat": A proposal. The Anatomical Record, 219(1):1-9, 1987. ISSN 1097-0185. https://doi.org/10.1002/ar.1092190104
Gustafsson T., Stenberg R., y Videman J. On nitsche's method for elastic contact problems.SIAM Journal on Scientific Computing, 42(2):B425-B446, 2020. https://doi.org/10.1137/19M1246869
Hernandez C., Beaupré G., Keller T., y Carter D. The influence of bone volume fractionand ash fraction on bone strength and modulus. Bone, 29(1):74-78, 2001. https://doi.org/10.1016/S8756-3282(01)00467-7
Martínez-Reina J., García-Aznar J., Domínguez J., y Doblaré M. On the role of bone damage in calcium homeostasis. Journal of Theoretical Biology, 254(3):704-712, 2008. https://doi.org/10.1016/j.jtbi.2008.06.007
Martínez-Reina J., Ojeda J., y Mayo J. On the use of bone remodelling models to estimate the density distribution of bones. uniqueness of the solution. PLOS ONE, 11(2):e0148603, 2016. https://doi.org/10.1371/journal.pone.0148603
Mikic B. y Carter D. Bone strain gage data and theoretical models of functional adaptation. Journal of Biomechanics, 28(4):465-469, 1995. ISSN 0021-9290. https://doi.org/10.1016/0021-9290(94)00085-I
Moya-Angeler J. Current concepts on osteonecrosis of the femoral head. World Journal of Orthopedics, 6(8):590, 2015. https://doi.org/10.5312/wjo.v6.i8.590
Petheram T.G., Whitehouse S.L., Kazi H.A., Hubble M.J.W., Timperley A.J., Wilson M.J., y Howell J.R. The exeter universal cemented femoral stem at 20 to 25 years. The Bone and Joint Journal, 98-B(11):1441-1449, 2016. https://doi.org/10.1302/0301-620X.98B11.37668
Savio D. y Bagno A. When the total hip replacement fails: A review on the stress-shielding effect. Processes, 10(3):612, 2022. https://doi.org/10.3390/pr10030612
Weinans H., Huiskes R., Rietbergen B.V., Sumner D.R., Turner T.M., y Galante J.O. Adaptive bone remodeling around bonded noncemented total hip arthroplasty: A comparison between animal experiments and computer simulation. Journal of Orthopaedic Research, 11(4):500-513, 1993. https://doi.org/10.1002/jor.1100110405
Westerman R.W., Whitehouse S.L., Hubble M.J.W., Timperley A.J., Howell J.R., yWilson M.J. The exeter v40 cemented femoral component at a minimum 10-year follow-up. The Bone and Joint Journal, 100-B(8):1002-1009, 2018. https://doi.org/10.1302/0301-620X.100B8.BJJ-2017-1535.R1
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.