In-Silico Design of 3D Biomimetic Nanofibrous Scaffolds for Tissue Engineering: Development of Parametric Geometries, Meshing and Automated Calculation

Authors

  • Gustavo E. Carr Universidad Nacional de Mar del Plata, Facultad de Ingeniería, Departamento de Mecánica, GIAC & Grupo Polímeros Biomédicos, INTEMA & CONICET. Mar del Plata, Argentina.
  • Nahuel M. Jáuregui Universidad Nacional de Mar del Plata, Facultad de Ingeniería, Departamento de Mecánica, GIAC & CONICET. Mar del Plata, Argentina.
  • Nicolás A. Antonelli Universidad Nacional de Mar del Plata, Facultad de Ingeniería, Departamento de Mecánica, GIAC & Grupo Polímeros Biomédicos, INTEMA & Universidad Tecnológica Nacional, Facultad Regional Mar del Plata, HidroSim. Mar del Plata, Argentina.
  • Florencia Montini Ballarín Instituto de Investigaciones en Ciencia y Tecnología de Materiales (UNMdP-CONICET), Grupo Polímeros Biomédicos & CONICET. Mar del Plata, Argentina.
  • Santiago A. Urquiza Universidad Nacional de Mar del Plata, Facultad de Ingeniería, Departamento de Mecánica, GIAC & Universidad Tecnológica Nacional, Facultad Regional Mar del Plata, HidroSim. Mar del Plata, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i17.89

Keywords:

Automated parametric modeling, Biomimetic nanofibrous scaffolds, Finite Elements Method, In-silico testing, Hyperelasticity

Abstract

Multiscale computational modeling allows the design of synthetic fibrous matrices to reproduce the mechanical behavior of biological tissues. The aim of this work is to develop a method to obtain CAD designs of artificial tissues (scaffolds) for automated in-silico uniaxial testing. A software was developed to automatically generate a parametric library of geometries to replace complex tissue microstructures. In-silico tensile tests were performed, the results obtained were presented and a discussion was made regarding the geometric variations studied.

References

Caballero D.E., Montini-Ballarin F., Gimenez J.M., Biocca N., Rull N., Frontini P., y Urquiza S.A. Reduced kinematic multiscale model for tissue engineering electrospun scaffolds. Mechanics of Materials, 166:104214, 2022. ISSN 0167-6636. https://doi.org/10.1016/j.mechmat.2022.104214

Gamma E., Helm R., Johnson R., y Vlissides J.M. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1 edición, 1994. ISBN 0201633612.

Geris L., Lambrechts T., Carlier A., y Papantoniou I. The future is digital: In silico tissue engineering. Current Opinion in Biomedical Engineering, 6:92-98, 2018. ISSN 2468-4511. Tissue Engineering and Regenerative Medicine / Biomaterials. https://doi.org/10.1016/j.cobme.2018.04.001

Geuzaine C. y Remacle J.F. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309-1331, 2009. https://doi.org/10.1002/nme.2579

Gierig M., Wriggers P., y Marino M. Arterial tissues and their inflammatory response to collagen damage: A continuum in silico model coupling nonlinear mechanics, molecular pathways, and cell behavior. Computers in Biology and Medicine, 158:106811, 2023. ISSN 0010-4825. https://doi.org/10.1016/j.compbiomed.2023.106811

Kline M. Calculus: An Intuitive and Physical Approach (Second Edition). Dover Books on Mathematics. Dover Publications, 2013. ISBN 9780486134765.

Li Y., Zhao Y., Chi Y., Hong Y., y Yin J. Shape-morphing materials and structures for energyefficient building envelopes. Materials Today Energy, 22:100874, 2021. ISSN 2468-6069. https://doi.org/10.1016/j.mtener.2021.100874

Malinen M. y Råback P. Elmer finite element solver for multiphysics and multiscale problems,volumen 19, páginas 101-113. 2013. ISBN 978-3-89336-899-0.

Montini Ballarin F., Caracciolo P., Blotta E., Ballarin V., y Abraham G. Optimization of poly(llactic acid)/segmented polyurethane electrospinning process for the production of bilayered small-diameter nanofibrous tubular structures. Materials Science and Engineering: C, 42:489-499, 2014. ISSN 0928-4931. https://doi.org/10.1016/j.msec.2014.05.074

Montini-Ballarin F., Suárez-Bagnasco D., Cymberknop L.J., Balay G., Caracciolo P.C., Negreira C., Armentano R.L., y Abraham G.A. Elasticity response of electrospun bioresorbable small-diameter vascular grafts: Towards a biomimetic mechanical response. Materials Letters,209:175-177, 2017. ISSN 0167-577X. https://doi.org/10.1016/j.matlet.2017.07.110

OpenCascadeSAS. Open cascade technology. https:git.dev.opencascade.org/gitweb/?p=occt.git;https://dev.opencascade.org/doc/overview/html/index.html, 2024.

Salome. The Open Source Integration Platform for Numerical Simulation. Version 8.5.

OPEN CASCADE SAS, 1 place des frères Montgolfier, France. url: https://www.salomeplatform.org. 2023.

Singh C., Wong C.S., y Wang X. Medical textiles as vascular implants and their success to mimic natural arteries. Journal of Functional Biomaterials, 6(3):500-525, 2015. ISSN 2079-4983. https://doi.org/10.3390/jfb6030500

van Kampen K.A., ten Brink T., Mota C., y Moroni L. Scaffolds with a tunable nonlinear elastic region using a corrugated design. Small Structures, 5(5):2300399, 2024. https://doi.org/10.1002/sstr.202300399

Van Rossum G. Python tutorial. http://www.python.org, 1995-2024.

Published

2024-11-08