Modelling of the Precipitation of Oriented Hydrides During the Storage of Spent Nuclear Fuels

Authors

  • Francisco Rotea Comisión Nacional de Energía Atómica, Gerencia Combustibles Nucleares, Sección Códigos y Modelos & Instituto Sábato. San Martín, Prov. de Buenos Aires, Argentina.
  • Ezequiel Goldberg Comisión Nacional de Energía Atómica, Gerencia Combustibles Nucleares, Sección Códigos y Modelos. San Martín, Prov. de Buenos Aires, Argentina.
  • Mauricio E. Cazado Comisión Nacional de Energía Atómica, Gerencia Combustibles Nucleares, Sección Códigos y Modelos. San Martín, Prov. de Buenos Aires, Argentina.
  • María Evangelina De Las Heras Comisión Nacional de Energía Atómica, Gerencia de Área Energía Nuclear, División Hidrógeno en Materiales. San Martín, Prov. de Buenos Aires, Argentina.
  • Juan I. Mieza Comisión Nacional de Energía Atómica, Gerencia de Área Energía Nuclear, División Hidrógeno en Materiales & Instituto Sábato. San Martín, Prov. de Buenos Aires, Argentina.
  • Alejandro Soba Comisión Nacional de Energía Atómica, Gerencia Combustibles Nucleares, Sección Códigos y Modelos & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). San Martín, Prov. de Buenos Aires, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i18.96

Keywords:

Hydrogen, hydrides, reorientation, dry storage, spent nuclear fuels

Abstract

The stress and temperature conditions to which a spent nuclear fuel cladding is subjected during dry storage mean that the hydrogen absorbed during the operation period can precipitate in the form of radially oriented hydrides, which can significantly degrade the mechanical properties of the cladding. This paper presents the implementation of a computational model to simulate the hydride reorientation phenomenon, with the aim of integrating it into the dry storage module of the DIONISIO code. The model was validated through our own experiments, as well as with experiments available in the literature. In general, a good agreement between measured and simulated results was obtained.

References

Aliev T., Kolesnik M., Likhanskii V., y Saiutina V. Modeling of hydride reorientation in E110 during thermal cycling. Journal of Nuclear Materials, 557:153230, 2021. https://doi.org/10.1016/j.jnucmat.2021.153230

Billone M.C., Burtseva T.A., y Einziger R.E. Ductile-to-brittle transition temperature for highburnup cladding alloys exposed to simulated drying-storage conditions. Journal of Nuclear Materials, 433:431-448, 2013. https://doi.org/10.1016/j.jnucmat.2012.10.002

Chu H.C., Wu S.K., y Kuo R.C. Hydride reorientation in Zircaloy-4 cladding. Journal of Nuclear Materials, 373:319-327, 2008. d https://doi.org/10.1016/j.jnucmat.2007.06.012

El-Samrah M.G., Tawfic A.F., y Chidiac S.E. Spent nuclear fuel interim dry storage; Design requirements, most common methods, and evolution: A review. Annals of Nuclear Energy, 160:108408, 2021. doi:10.1016/J.ANUCENE.2021.108408. https://doi.org/10.1016/j.anucene.2021.108408

Hardie D. y Shanahan M.W. Stress reorientation of hydrides in zirconium-2.5% niobium. Journal of Nuclear Materials, 55:1-13, 1975. https://doi.org/10.1016/0022-3115(75)90132-4

Kearns J.J. Diffusion coefficient of hydrogen in alpha zirconium, Zircaloy-2 and Zircaloy-4. Journal of Nuclear Materials, 43:330-338, 1972. https://doi.org/10.1016/0022-3115(72)90065-7

Kim J., Yoon H., Kook D., y Kim Y. A study on the initial characteristics of domestic spent nuclear fuels for long term dry storage. Nuclear Engineering and Technology, 45:377-384, 2013. ISSN 1738-5733. doi:10.5516/NET.06.2012.082. https://doi.org/10.5516/NET.06.2012.082

Kolesnik M., Aliev T., y Likhanskii V. Modeling of hydrogen behavior in spent fuel claddings during dry storage. Journal of Nuclear Materials, 508:567-573, 2018. https://doi.org/10.1016/j.jnucmat.2018.06.012

Konarski P., Cozzo C., Khvostov G., y Ferroukhi H. Spent nuclear fuel in dry storage conditions - current trends in fuel performance modeling. Journal of Nuclear Materials, 555:153138, 2021. https://doi.org/10.1016/j.jnucmat.2021.153138

Lee J.M., Kim H.A., Kook D.H., y Kim Y.S. A study on the effects of hydrogen content and peak temperature on threshold stress for hydride reorientation in Zircaloy-4 cladding. Journal of Nuclear Materials, 509:285-294, 2018. ISSN 0022-3115. https://doi.org/10.1016/j.jnucmat.2018.07.005

Maric M., Thomas R., Nunez-Iglesias J., Atkinson M., Bertsch J., Frankel P., Race C., Barberis P., Bourlier F., Preuss M., y Shanthraj P. A novel method for radial hydride analysis in zirconium alloys: HAPPy. Journal of Nuclear Materials, 559:153442, 2022. https://doi.org/10.1016/j.jnucmat.2021.153442

Motta A.T., Capolungo L., Chen L.Q., Cinbiz M.N., Daymond M.R., Koss D.A., Lacroix E., Pastore G., Simon P.C.A., Tonks M.R., Wirth B.D., y Zikry M.A. Hydrogen in zirconium alloys: A review. Journal of Nuclear Materials, 518:440-460, 2019. https://doi.org/10.1016/j.jnucmat.2019.02.042

Puls M.P. The effect of hydrogen and hydrides on the integrity of zirconium alloy components: delayed hydride cracking. Springer Science & Business Media, 2012. https://doi.org/10.1007/978-1-4471-4195-2

Woo D. y Lee Y. Understanding the mechanical integrity of zircaloy cladding with various radial and circumferential hydride morphologies via image analysis. Journal of Nuclear Materials, 584:154560, 2023. https://doi.org/10.1016/j.jnucmat.2023.154560

Zanellato O., Preuss M., Buffiere J.Y., Ribeiro F., Steuwer A., Desquines J., Andrieux J., y Krebs B. Synchrotron diffraction study of dissolution and precipitation kinetics of hydrides in Zircaloy-4. Journal of Nuclear Materials, 420:537-547, 2012. https://doi.org/10.1016/j.jnucmat.2011.11.009

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024