Formulación del Problema de Propagación de Ondas Elásticas No Locales en un Medio Microestructurado

Autores/as

  • Juan C. Barreto Universidad Nacional de Formosa, Laboratorio de Modelización y Simulación Numérica, Micromecánica de Materiales Complejos. Formosa, Argentina.
  • Mario A. Meza Universidad Nacional de Formosa, Laboratorio de Modelización y Simulación Numérica, Micromecánica de Materiales Complejos. Formosa, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8211

Palabras clave:

Teorías de elasticidad no locales

Resumen

Después de una breve revisión de los conceptos principales de la teoría de elasticidad no local, se derivan las ecuaciones constitutivas del medio no local, conteniendo microestructuras. A continuación, se analiza la propagación de ondas elásticas no locales, con condiciones iniciales periódicas en medios conteniendo microestructuras. Se construye la representación de la solución semi-analítica, utilizando los teoremas de Representación de Green-Lagrange.

Citas

Aifantis E.C. A proposal for continuum with microstructure. Mechanics Research Communications, 5(3):139–145, 1978. ISSN 0093-6413. http://doi.org/10.1016/0093-6413(78)90047-2.

Aifantis E.C. On the role of gradients in the localization of deformation and fracture. International Journal of Engineering Science, 30(10):1279–1299, 1992. ISSN 0020-7225. http://doi.org/10.1016/0020-7225(92)90141-3.

Aifantis E.C. Update on a class of gradient theories. Mechanics of Materials, 35(3):259–280, 2003. ISSN 0167-6636. http://doi.org/10.1016/S0167-6636(02)00278-8.

Aifantis E.C. Chapter One - Internal Length Gradient (ILG) Material Mechanics Across Scales and Disciplines. volumen 49 de Advances in Applied Mechanics, páginas 1–110. Elsevier, 2016. http://doi.org/https://doi.org/10.1016/bs.aams.2016.08.001.

Altan S.B. y Aifantis E.C. On the structure of the mode III crack-tip in gradient elasticity. Scripta Metallurgica et Materialia, 26(2):319–324, 1992. ISSN 0956-716X. http://doi.org/10.1016/0956-716X(92)90194-J.

Askes H. y Aifantis E.C. Gradient Elasticity Theories in Statics and Dynamics - A Unification of Approaches. International Journal of Fracture, 139(2):297–304, 2006. ISSN 1573-2673. http://doi.org/10.1007/s10704-006-8375-4.

Askes H. y Aifantis E.C. Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results. International Journal of Solids and Structures, 48(13):1962–1990, 2011. ISSN 0020-7683. http://doi.org/10.1016/j.ijsolstr.2011.03.006.

Cosserat E. y Cosserat F. Théorie des corps déformables. A. Hermann et fils, 1909. de Souza Neto E.A., Blanco P.J., Sánchez P.J., y Feijóo R.A. An RVE-based multiscale theory of solids with micro-scale inertia and body force effects. Mechanics of Materials, 80:136–144, 2015. ISSN 0167-6636. http://doi.org/https://doi.org/10.1016/j.mechmat.2014.10.007.

dell’Isola F. y Gavrilyuk S., editores. Variational Models and Methods in Solid and Fluid Mechanics. CISM International Centre for Mechanical Sciences. Springer Vienna, 2012. ISBN 978-3-7091-0983-0. http://doi.org/10.1007/978-3-7091-0983-0.

Distler J., Jafry M., Karch A., y Raz A. Interacting fractons in 2+1-dimensional quantum field theory. Journal of High Energy Physics, 2022(3), 2022. ISSN 1029-8479. http://doi.org/10.1007/jhep03(2022)070.

Eringen A.C. y ¸Suhubi E.S. Nonlinear theory of micro-elastic solids—II. International Journal of Engineering Science, 2(4):389–404, 1964a. ISSN 0020-7225. http://doi.org/https://doi.org/10.1016/0020-7225(64)90017-5.

Eringen A.C. y ¸Suhubi E.S. Nonlinear theory of simple micro-elastic solids—I. International Journal of Engineering Science, 2(2):189–203, 1964b. ISSN 0020-7225. http://doi.org/10.1016/0020-7225(64)90004-7.

Eshelby J.D. The elastic field outside an ellipsoidal inclusion. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 252(1271):561–569, 1959. http://doi.org/10.1098/rspa.1959.0173.

Eshelby J.D. The elastic energy-momentum tensor. Journal of Elasticity, 5(3):321–335, 1975. ISSN 1573-2681. http://doi.org/10.1007/BF00126994.

Gurtin M.E. Configurational Forces as Basic Concepts of Continuum Physics. Applied Mathematical Sciences. Springer New York, 2000. http://doi.org/10.1007/b97847.

Kröner E. Elasticity theory of materials with long range cohesive forces. International Journal of Solids and Structures, 3(5):731–742, 1967. ISSN 0020-7683. http://doi.org/10.1016/0020-7683(67)90049-2.

Lions J.L. Problèmes aux limites non classiques pour équations d’évolution. Revista Mathematica de universidad computense de Madrid, 1(1,2,3), 1988. ISSN 1139-1138.

Maugin G.A. Continuum Mechanics of Electromagnetic Solids. Elsevier, North-Holland, Amsterdam,1988. ISBN 9780444703996.

Maugin G.A. Material Inhomogeneities in Elasticity. Applied Mathematics. Chapman and Hall/CRC, New York, 1993. ISBN 9781003059882. http://doi.org/10.1201/9781003059882.

Mielke A. y Roubí?cek T. Numerical approaches to rate-independent processes and applications in inelasticity. ESAIM: Mathematical Modelling and Numerical Analysis, 43(3):399–428, 2009. http://doi.org/10.1051/m2an/2009009.

Mindlin R.D. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 16(1):51–78, 1964. ISSN 1432-0673. http://doi.org/10.1007/BF00248490.

Mindlin R.D. Second gradient of strain and surface-tension in linear elasticity. International Journal of Solids and Structures, 1(4):417–438, 1965. ISSN 0020-7683. http://doi.org/https://doi.org/10.1016/0020-7683(65)90006-5.

Mindlin R.D. y Eshel N.N. On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures, 4(1):109–124, 1968. ISSN 0020-7683. http://doi.org/https://doi.org/10.1016/0020-7683(68)90036-X.

Scheibner C., Souslov A., Banerjee D., Surówka P., Irvine W.T.M., y Vitelli V. Odd elasticity. Nature Physics, 16(4):475–480, 2020. ISSN 1745-2481. http://doi.org/10.1038/s41567-020-0795-y.

Silling S.A. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48(1):175–209, 2000. ISSN 0022-5096. http://doi.org/https://doi.org/10.1016/S0022-5096(99)00029-0.

Stilz M., dell’Isola F., Giorgio I., Eremeyev V.A., Ganzenmüller G., y Hiermaier S. Continuum models for pantographic blocks with second gradient energies which are incomplete. Mechanics Research Communications, 125:103988, 2022. ISSN 0093-6413. http://doi.org/https://doi.org/10.1016/j.mechrescom.2022.103988.

Descargas

Publicado

2025-11-27

Número

Sección

Artículos completos del congreso MECOM 2025