Losas de HRFA: Estudio de la Distribución y Orientación de Fibras a Través de Tomografía Computada

Autores/as

  • Facundo L. Ferrado Universidad Tecnológica Nacional, Facultad Regional Concepción del Uruguay, Grupo de Investigación en Mecánica Computacional y Estructuras (GIMCE). Concepción del Uruguay, Argentina. https://orcid.org/0000-0002-2016-9722
  • Omar R. Faure Universidad Tecnológica Nacional, Facultad Regional Concepción del Uruguay, Grupo de Investigación en Mecánica Computacional y Estructuras (GIMCE). Concepción del Uruguay, Argentina. & Universidad Tecnológica Nacional, Facultad Regional Concordia. Concordia, Argentina.
  • Viviana C. Rougier Universidad Tecnológica Nacional, Facultad Regional Concepción del Uruguay, Grupo de Investigación en Mecánica Computacional y Estructuras (GIMCE). Concepción del Uruguay, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8378

Palabras clave:

Losas de HRFA, Tomografía computada, Orientación y distribución de las fibras

Resumen

El desempeño mecánico de los materiales fibrados, como el Hormigón Reforzado con Fibras de Acero depende (HRFA), depende principalmente de la orientación y distribución del refuerzo de fibras dentro de la masa cementicia. Este hecho despierta la necesidad de continuar con el estudio de este fenómeno para así comprender mejor el comportamiento del material maximizando su rendimiento. En este trabajo se lleva a cabo un estudio de la configuración espacial de las fibras de acero en elementos losa a partir de la visualización y análisis de imágenes obtenidas mediante tomografía computada. Luego, a partir del uso de esta tecnología junto con algoritmos de segmentación y software de reconstrucción de imágenes 3D, se obtienen perfiles de orientación y distribución de manera detallada. Las imágenes muestran una distribución homogénea sin detectarse zonas significativas de mayor o menor concentración de fibras. Respecto a la orientación, se obtiene una marcada predominancia de la posición de las fibras en un plano paralelo al eje de la losa.

Citas

Abrishambaf A., Barros J., y Cunha V. Relation between fibre distribution and post-cracking behaviour in steel fibre reinforced self compacting concrete panels. Cement and Concrete Research, 51:57–66, 2013. http://doi.org/10.1016/j.cemconres.2013.04.009.

Akkaya Y., Peled A., y Shah S. Parameters related to fiber length and processing in cementitious composites. Materials and Structures, 33:515–524, 2000. http://doi.org/10.1007/BF02480529.

Akkaya Y., Shah S., y Ankerman B. Effect of fiber dispersion on multiple cracking of cement composites. Engineering Mechanics, 127(4):311–316, 2001. http://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(311).

Alberti M., Enfedaque A., y Galvez J. A review on the assessment and prediction of the orientation and distribution of fibres for concrete. Composites Part B: Engineering, 151:274–290, 2018. http://doi.org/10.1016/j.compositesb.2018.05.040.

Balazs G., Czoboli O., Lubloy E., Kristof K., y Barsi A. Observation of steel fibres in concrete with computed tomography. Construction and Building Materials, 140:534–541, 2017. http://doi.org/10.1016/j.conbuildmat.2017.02.114.

Barnett S., Lataste J., Parry T., Millard S., y Soutsos M. Assessment of fibre orientation in ultra-high performance fibre reinforced concrete and its effect on flexural strength. Materials and Structures, 43:1009–1023, 2010. http://doi.org/10.1617/s11527-009-9562-3.

Boel V., Cnudde V., De Schutter G., y Jacobs P. Exploring the potential of x-ray tomography in microstructural studies of cementitious systems. En 2nd International RILEM Symposium on Advances in Concrete through Science and Engineering. 2006.

Bordelon A. y Roesler J. Spatial distribution of synthetic fibers in concrete with xray computed tomography. Cement and Concrete Composites, 53:35–43, 2014. http://doi.org/10.1016/j.cemconcomp.2014.04.007.

Cavalaro S., Lopez R., y Torrents J. Improved assessment of fibrecontent and orientation with inductive method in sfrc. Materials and Structures, 48:1859–1873, 2014. http://doi.org/10.1617/s11527-014-0279-6.

Chermant J., Chermant L., Coster M., Dequiedt A., y Redon C. Some fields of applications of automatic image analysis in civil engineering. Cement and Concrete Composites, 23(2-3):157–169, 2001. http://doi.org/10.1016/S0958-9465(00)00059-7.

Clarke A., Archenhold G., y Davidson N. A novel technique for determining the 3d spatial distribution of glass fibres in polymer composites. Composites Science and Technology, 55(1):175–191, 1995. http://doi.org/10.1016/0266-3538(95)00087-9.

Clarke A.R. y Eberhardt C.N. Microscopy techniques for materials science. CRC Press ; Woodhead Pub., Boca Raton, FL, Cambridge, England, 2002.

Darna I., Sugiyama T., y Promentilla M. Application of x-ray ct to study diffusivity in cracked concrete through the observation of tracer transport. Journal of Advanced Concrete Technology, 11(10):266– 281, 2013. http://doi.org/10.3151/jact.11.266.

Dupont D. y Vandewalle L. Distribution of steel fibres in rectangle sections. Cement and Concrete Composites, 27:391–398, 2005. http://doi.org/10.1016/j.cemconcomp.2004.03.005.

Faifer M., Ottoboni R., Toscani S., y Ferrara L. Nondestructive testing of steel-fiber reinforced concrete using a magnetic approach. IEEE Transactions on Instrumentation and Measurement, 60(5):1709– 1717, 2011. http://doi.org/10.1109/TIM.2010.2090059.

Faifer M., Ottoboni R., Toscani S., Ferrara L., y Felicetti R. A multi-electrode measurement system for steel fiber reinforced concrete materials monitoring. Proceedings to IEEE International Instrumentation and Measurement Technology Conference, 2009. http://doi.org/10.1109/IMTC.2009.5168466.

Ferrara L., Faifer M., y Toscani S. A magnetic method for non destructive monitoring of fiber dispersion and orientation in steel fiber reinforced cementitious composites. part 1: method calibration. Materials and Structures, 45:575–589, 2012. http://doi.org/10.1617/s11527-011-9793-y.

Ferrara L. y Meda A. Relationships between fibre distribution, workability and the mechanical properties of sfrc applied to precast roof elements. Materials and Structures, 39(4):411–420, 2006. http://doi.org/10.1617/s11527-005-9017-4.

Gettu R., Gardner D., Saldivar H., y Barragán B. Study of the distribution and orientation of fibers in sfrc specimens. Materials and Structures, 38(1):31–37, 2005. http://doi.org//10.1016/j.cemconcomp.2011.09.005.

Herrmann H. y Pastorelli E. Methods for fibre orientation analysis of x-ray tomography images of steel fibre reinforced concrete (sfrc). Journal of Materials Science, 51:3772–3783, 2016. http://doi.org/10.1007/s10853-015-9695-4.

Hine P., Davidson N., Duckett R., A.R. C., yWard I. Hydrostatically extruded, glass fibre reinforced polyoxymethylene: I the development of fibre and matrix orientation. Polymer Composites, 17(5):720– 729, 1995. http://doi.org/10.1002/pc.10664.

Kim J., Kim J., Ha G., y Kim Y. Tensile and fiber dispersion performance of ecc (engineered cementitious composites) produced with ground granulated blast furnace slag. Cement and Concrete Research, 37(7):1096–1105, 2007. http://doi.org/10.1016/j.cemconres.2007.04.006.

Kiranbala D. y Bishwotrij S. Effects of steel fibres in reinforced concrete. International Journal of Engineering Research & Technology, 2(10):2906–2913, 2013. http://doi.org/10.17577/IJERTV2IS101024.

Kobler J., Schneider M., Ospald F., Andra H., y Muller R. Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts. Computational Mechanics, 61(6):729–750, 2018. ISSN 1432-0924. http://doi.org/10.1007/s00466-017-1478-0.

Laranjeira F., Grunewald S., Walraven J., Blom C., Molins C., y Aguado A. Characterization of the orientation profile of steel fiber reinforced concrete. Materials and Structures, 44(6):1093–1111, 2011. http://doi.org/10.1617/s11527-010-9686-5.

Lataste J., Behloud M., y Breysse D. Characterization of fibers distribution in a steel fiber reinforced concrete with electrical resistivity measurements. NDT & E International, 41(8):638–647, 2008. http://doi.org/10.1016/j.ndteint.2008.03.008.

Li B., You W., Liu S., Peng L., Huang X., y Yu W. Role of confinement in the shear banding and shear jamming in noncolloidal fiber suspensions. Soft Matter, 19:8965–8977, 2023. http://doi.org/10.1039/D3SM00943B.

Li F., Li L., Yan D., y Wu P. Study of the effect of fibre orientation on artificially directed steel fibre-reinforced concrete. Advances in Materials Science and Engineering, 2018(1), 2018. http://doi.org/10.1155/2018/8657083.

Lu S., Landis E., y Keane D. X-ray microtomographic studies of pore structure and permeability in portland cement concrete. Materials and Structures, 39:611–620, 2006. http://doi.org/10.1617/s11527-006-9099-7.

Masad E. X-ray computed tomography of aggregates and asphalt mixes. Materials Evaluation, 62(7):775–783, 2004. http://doi.org/10.1617/s11527-006-9099-7.

Masad E., Jandhyala V., Dasgupta N., Somadevan N., y Shashidhar N. Characterization of air void distribution in asphalt mixes using x-ray computed tomography. Journal of Materials in Civil Engineering, 14:122–129, 2002. http://doi.org/10.1061/(ASCE)0899-1561(2002)14:2(122).

Mason T., Campo M., Hixson A., y Woo L. Impedance spectroscopy of fiber-reinforced cement composites. Cement and Concrete Composites, 24:457–465, 2002. http://doi.org/10.1016/S0958-9465(01)00077-4.

Matzkanin G. A review of nondestructive characterisation of composites using nmr. En Nondestructive Characterization of Materials, páginas 655–669. 1989. http://doi.org/doi.org/10.1007/978-3-642-84003-6_77.

Michels J., Christen R., y Waldmann D. Experimental and numerical investigation on post cracking behaviour of steel fiber reinforced concrete. Engineering Fracture Mechanics, 98:326–349, 2013. http://doi.org/10.1016/j.engfracmech.2012.11.004.

Michels J., Waldmann D., Maas S., y Zurbes A. Steel fibers as only reinforcement for flat slab construction experimental investigation and design. Construction and Building Materials, 26(1):145–155, 2012. http://doi.org/10.1016/j.conbuildmat.2011.06.004.

Ozyurt N., Mason T., y Shah S. Correlation of fiber dispersion, rheology and mechanical performance of frcs. Cement and Concrete Composites, 29(2):70–79, 2007. http://doi.org/10.1016/j.cemconcomp.2006.08.006.

Paluch B. Analysis of geometric imperfections affecting the fibers in unidirectional composites. Journal of Composite Materials, 30(4):454–485, 1996. http://doi.org/10.1177/002199839603000403.

Poitou A., Chinesta F., y Bernier G. Orienting fibers by extrusion in reinforced reactive powder concrete. Journal of Engineering Mechanics, 127(6):593–598, 2001. http://doi.org/10.1061/(ASCE)0733-9399(2001)127:6(593).

Ponikiewsky T., Golaszewsky J., Rudzki M., y Bugdol M. Determination of steel fibres distribution in self-compacting concrete beams using x-ray computed tomography. Archives of Civil and Mechanical Engineering, 15(2):558–568, 2015. http://doi.org/10.1016/j.acme.2014.08.008.

Ren W., Yang Z., Sharma R., Zhang C., y Withers P. Two-dimensional x-ray ct image based meso-scale fracture modelling of concrete. Engineering Fracture Mechanics, 133:24–39, 2015. http://doi.org/10.1016/j.engfracmech.2014.10.016.

Skarzynski L. y Suchorzewski J. Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using digital image correlation technique and xray micro computed tomography. Construction and Building Materials, 183:283–299, 2018. http://doi.org/10.1016/j.conbuildmat.2017.11.030.

Song P. y Hwang S. Mechanical properties of high-strength steel fiber reinforced concrete. Construction and Building Materials, 18(9):669–673, 2004. http://doi.org/10.1016/j.conbuildmat.2004.04.027.

Suuronen J., Kallonen A., Eik M., Puttonen J., Serimaa R., y Herrmann H. Analysis of short fibres orientation in steel fibre-reinforced concrete (sfrc) by x-ray tomography. Journal of Materials Science, 48(3):1358–1367, 2013. http://doi.org/10.1007/s10853-012-6882-4.

Svec O. y Zirgulis G. Influence of formwork surface on the orientation of steel fibers within selfcompacting concrete and on the mechanical properties of casting structural element. Cement and Concrete Composites, 50:60–72, 2014. http://doi.org/10.1016/j.cemconcomp.2013.12.002.

Torigoe S., Horikoshi T., Ogawa A., Saito T., y Hamada T. Study on evaluation method for pva fiber distribution in engineered cementitious composite. Journal of Advanced Concrete Technology, 1(3):265–268, 2003. http://doi.org/10.3151/jact.1.265.

Torrents J., Blanco A., y Pujadas P. Inductive method for assessing the amountand orientation of steel fibers in concrete. Materials and Structures, 45:1577–1592, 2012. http://doi.org/10.1617/s11527-012-9858-6.

Toutanji H. y Bayasi Z. Effects of manufacturing techniques on the flexural behavior of steel fiber-reinforced concrete. Cement and Concrete Research, 28(1):115–124, 1998. http://doi.org/10.1016/S0008-8846(97)00213-5.

Wang R., Gao X., Zhang J., y Han G. Spatial distribution of steel fibers and air bubbles in uhpc cylinder determined by x-ray ct method. Construction and Building Materials, 160:39–47, 2018. http://doi.org/10.1016/j.conbuildmat.2017.11.030.

Woo L., Wansom S., y Ozyurt N. Characterizing fiber dispersion in cement composites using ac-impedance spectroscopy. Cement and Concrete Composites, 27(6):627–636, 2005. http://doi.org/10.1016/j.cemconcomp.2004.06.003.

Zandi Y., Husem M., y Pul S. Effect of distribution and orientation of steel fiber reinforced concrete. En Proceedings of the 4th WSEAS international conference on Energy and development - environment - biomedicine, páginas 260–264. 2011.

Zhou B. y Uchida Y. Influence of flowability, casting time and formwork geometry on fiber orientation and mechanical properties of uhpfrc. Cement and Concrete Research, 95:164–177, 2017. http://doi.org/10.1016/j.cemconres.2017.02.017.

Descargas

Publicado

2025-11-28

Número

Sección

Artículos completos del congreso MECOM 2025

Artículos más leídos del mismo autor/a