Modeling Drop Atomization Using Computational Fluid Dynamics

Autores/as

  • Patricio Canciani Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Rosario, Argentina. & Universidad Nacional de Cuyo, Instituto Balseiro. San Carlos de Bariloche, Rio Negro, Argentina.
  • César Pairetti Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Rosario, Argentina. & Sorbonne Université, CNRS, Institu Jean Le Rond d’Alembert. Paris, France.
  • Hugo D. Navone Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura & Instituto de Física de Rosario (CONICET). Rosario, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i6.32

Palabras clave:

DNS, droplet, Weber, axisymmetric, aerobreakup

Resumen

Atomization, a process in which droplets break into smaller structures, is common in both natural and industrial contexts. The mechanisms of droplet deformation and breakup are often described through hydrodynamic instabilities, informed by experimental studies, theoretical developments, and simulations via Computational Fluid Dynamics (CFD). In this work, Direct Numerical Simulations (DNS) were employed to analyze droplet atomization under various conditions. Two models were considered for studying droplet deformation and breakup: one axisymmetric and the other threedimensional. The results showed that the deformation and fragmentation of the droplet are highly de- pendent on the Weber number. Additionally, an increase in the Weber number accelerates the onset of the fragmentation process. The three-dimensional (3D) simulations revealed perforations with a spatial distribution characterized by initial axial symmetry, which dissipates as fragmentation progresses. DNS proves valuable in such studies due to its ability to detect the droplets produced during atomization, enabling the measurement of their positions and velocities at each moment, which can be aggregated into statistical data.

Citas

Chou W.H. and Faeth G. Temporal properties of secondary drop breakup in the bag breakup regime. International journal of multiphase flow, 1998. https://doi.org/10.1016/S0301-9322(98)00015-9

Deike L. Mass transfer at the ocean-atmosphere interface: the role of wave breaking, droplets, and bubbles. Annual Review of Fluid Mechanics, 2022. https://doi.org/10.1146/annurev-fluid-030121-014132

Eggers J. and Villermaux E. Physics of liquid jets. Reports on progress in physics, 2008. https://doi.org/10.1088/0034-4885/71/3/036601

Faeth G., Hsiang L.P., and Wu P.K. Structure and breakup properties of sprays. International Journal of Multiphase Flow, 1995. https://doi.org/10.1016/0301-9322(95)00059-7

Feng J.Q. A deformable liquid drop falling through a quiescent gas at terminal velocity. Journal of Fluid Mechanics, 2010. https://doi.org/10.1017/S0022112010001825

Guildenbecher D., López-Rivera C., and Sojka P. Secondary atomization. Experiments in Fluids, 2009. https://doi.org/10.1007/s00348-008-0593-2

Han J. and Tryggvason G. Secondary breakup of axisymmetric liquid drops. i. acceleration by a constant body force. Physics of Fluids, 1999. https://doi.org/10.1063/1.870229

Ishii M. Thermo-fluid dynamic theory of two-phase flow. NASA STI/Recon Technical Report A, 1975.

Jackiw I.M. and Ashgriz N. On aerodynamic droplet breakup. Journal of Fluid Mechanics, 2021. https://doi.org/10.1017/jfm.2021.7

Jain M., Prakash R.S., Tomar G., and Ravikrishna R. Secondary breakup of a drop at moderate weber numbers. Proc. R. Soc. A, 2015. https://doi.org/10.1098/rspa.2014.0930

Jain S.S., Tyagi N., Prakash R.S., Ravikrishna R., and Tomar G. Secondary breakup of drops at moderate weber numbers: Effect of density ratio and reynolds number. International Journal of Multiphase Flow, 2019. https://doi.org/10.1016/j.ijmultiphaseflow.2019.04.026

Kaminski E. and Jaupart C. The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. Journal of Geophysical Research: Solid Earth, 1998. https://doi.org/10.1029/98JB02795

Kékesi T., Amberg G., andWittberg L.P. Drop deformation and breakup. International Journal of Multiphase Flow, 2014. https://doi.org/10.1016/j.ijmultiphaseflow.2014.06.006

Li X.g. and Fritsching U. Process modeling pressure-swirl-gas-atomization for metal powder production. Journal of Materials Processing Technology, 2017. https://doi.org/10.1016/j.jmatprotec.2016.08.009

Ling Y., Legros G., Popinet S., and Zaleski S. Direct numerical simulation of an atomizing biodiesel jet: Impact of fuel properties on atomization characteristics. In Ilass Europe. 28th european conference on Liquid Atomization and Spray Systems. Editorial Universitat Politècnica de València, 2017. https://doi.org/10.4995/ILASS2017.2017.5035

Liu A.B., Mather D., and Reitz R.D. Modeling the effects of drop drag and breakup on fuel sprays. SAE Transactions, 1993. https://doi.org/10.4271/930072

Liu Z. and Reitz R. An analysis of the distortion and breakup mechanisms of high speed liquid drops. International journal of multiphase flow, 1997. https://doi.org/10.1016/S0301-9322(96)00086-9

Mahmood T. and Ling Y. Effect of reynolds number on aerobreakup of small liquid drops. In ICLASS 2021, 15th Triennial International Conference on Liquid Atomization and Spray Systems, Edinburgh, UK. 2021. https://doi.org/10.2218/iclass.2021.6045

Marcotte F. and Zaleski S. Density contrast matters for drop fragmentation thresholds at low ohnesorge number. Physical Review Fluids, 2019. https://doi.org/10.1103/PhysRevFluids.4.103604

Nicholls J. and Ranger A. Aerodynamic shattering of liquid drops. Aiaa Journal, 1969. https://doi.org/10.2514/6.1968-83

Opfer L., Roisman I., Venzmer J., Klostermann M., and Tropea C. Droplet-air collision dynamics: Evolution of the film thickness. Physical Review E, 2014. https://doi.org/10.1103/PhysRevE.89.013023

Pairetti C., Popinet S., Márquez Damián S., Nigro N., and Zaleski S. Bag mode breakup simulations of a single liquid droplet. In ECCOMAS, editor, ECCM-ECFD 2018. University of Glasgow, University of Edinburg, 2018.

Pairetti C., Villiers R., and Zaleski S. A numerical cough machine. arXiv, 2021.

Pilch M. and Erdman C. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. International journal of multiphase flow, 1987. https://doi.org/10.1016/0301-9322(87)90063-2

Popinet S. An accurate adaptive solver for surface-tension-driven interfacial flows. Journal of Computational Physics, 2009. https://doi.org/10.1016/j.jcp.2009.04.042

Popinet S. The Basilisk Code. 2014.

Santos D., Maurício A.C., Sencadas V., Santos J.D., Fernandes M.H., and Gomes P.S. Spray drying: an overview. Biomaterials-physics and chemistry-new edition, 2018. https://doi.org/10.5772/intechopen.72247

Sharma S., Pinto R., Saha A., Chaudhuri S., and Basu S. On secondary atomization and blockage of surrogate cough droplets in single-and multilayer face masks. Science advances, 2021. https://doi.org/10.1126/sciadv.abf0452

Theofanous T. and Li G. On the physics of aerobreakup. Physics of fluids, 2008. https://doi.org/10.1063/1.2907989

Theofanous T., Li G., and Dinh T.N. Aerobreakup in rarefied supersonic gas flows. J. Fluids Eng., 2004. https://doi.org/10.1115/1.1777234

Tryggvason G., Scardovelli R., and Zaleski S. Direct numerical simulations of gas-liquid multiphase flows. Cambridge University Press, 2011.

Villermaux E. and Bossa B. Single-drop fragmentation determines size distribution of rain-drops. Nature physics, 2009. https://doi.org/10.1038/nphys1340

Zaleski S., Li J., and Succi S. Two-dimensional navier-stokes simulation of deformation and breakup of liquid patches. Physical review letters, 1995. https://doi.org/10.1103/PhysRevLett.75.244

Zhao H., Liu H.F., Li W.F., and Xu J.L. Morphological classification of low viscosity drop bag breakup in a continuous air jet stream. Physics of Fluids, 2010. https://doi.org/10.1063/1.3490408

Descargas

Publicado

2024-11-08

Número

Sección

Artículos completos del congreso MECOM 2024