Experimental Results and Numerical Analysis of Capillary Water Absorption of Lime-Cement Mortars with PCM and Cellulose Fibres for 3DP Applications

Autores/as

  • Laura Ramallo Universidad de Alcalá, Architecture Department. Madrid, Spain.
  • Antonio Caggiano University of Genova, Department of Civil, Chemical and Environmental Engineering. Genova, Italy. & Universidad de Buenos Aires, Facultad de Ingeniería, Laboratorio de Métodos Numéricos en Ingeniería (LMNI-LAME) & Instituto de Tecnologías y Ciencias de la Ingeniería “Hilario Fernández Long” (INTECIN - CONICET/UBA). Ciudad Autónoma de Buenos Aires, Argentina.
  • Irene Palomar Universidad de Alcalá, Architecture Department. Madrid, Spain.
  • Álvaro Márquez Universidad de Alcalá, Architecture Department. Madrid, Spain.
  • Gonzalo Barluenga Universidad de Alcalá, Architecture Department. Madrid, Spain.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8394

Palabras clave:

Moisture Transport Phenomena, Lime-cement mortar, PCM, Cellulose Fibers, FEM, 3D-printing

Resumen

This study analyses the moisture transport phenomena of 3D printing lime-cement mortars with Phase Change Materials (PCM) and Cellulose Fibers (F) for architectural applications comparing experimental results and numerical analysis. A lime-cement control mortar was designed and cellulose fibers and different percentages of PCM (10, 20 and 30%) were added, leading to a total of eight different mixtures. Physical and mechanical characterization tests were performed on mortar samples and capillary water absorption tests were carried out over time for 24h. Based on the experimental results, the computational Moisture Diffusion model, a nonlinear FEM model, was used. Further transport phenomena will be addressed in successive works.

Citas

Aligizaki K (2005). Pore Structure of Cement-Based Materials. London: CRC Press https://doi.org/10.1201/9781482271959

BASF (2013). BASF Datasheet. Micronal PCM DS 5040 X, 11/2013

Caggiano A, Schicchi DS, Mankel C, Ukrainczyk N, Koenders EAB (2018). A mesoscale approach for modeling capillary water absorption and transport phenomena in cementitious materials. Computers & Structures, 200: 1-10 https://doi.org/10.1016/j.compstruc.2018.01.013

Fachinotti, V. D., Peralta, I., Toro, S., Storti, B. A., & Caggiano, A. (2023). Automatic generation of high-fidelity representative volume elements and computational homogenization for the determination of thermal conductivity in foamed concretes. Materials and Structures, 56(10), 179. https://doi.org/10.1617/s11527-023-02253-2

Guardia, C., Schicchi, D.S., Caggiano, A. et al. On the capillary water absorption of cementlime mortars containing phase change materials: Experiments and simulations. Build. Simul. 13, 19-31 (2020). https://doi.org/10.1007/s12273-019-0556-y

Isgor OB, Razaqpur AG (2004). Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures. Cement and Concrete Composites, 26: 57-73 https://doi.org/10.1016/S0958-9465(02)00125-7

Maekawa K, Chaube R, Kishi T, (2014). Modelling of Concrete Performance: Hydration, Microstructure and Mass Transport. London: CRC Press.

Mankel C, Caggiano A, Ukrainczyk N, Koenders E (2019). Thermal energy storage characterization of cement-based systems containing Microencapsulated-PCMs. Construction and Building Materials, 199: 307-320 https://doi.org/10.1016/j.conbuildmat.2018.11.195

Martín-Pérez B, Pantazopoulou SJ, Thomas MDA (2001). Numerical solution of mass transport equations in concrete structures. Computers & Structures, 79: 1251-1264 https://doi.org/10.1016/S0045-7949(01)00018-9

Márquez, Á., Ramallo, L., Varela, H., Barluenga, G., Puentes, J. 3D Printing Architectural Applications of cement-lime mortars with microencapsulated Phase Change Mate-rials (PCM). In: Digital Concrete 2024 - Supplementary Proceedings (2024).

Palomar, I., Barluenga, G., Puentes, J. Lime-cement mortars for coating with improved thermal and acoustic performance, Construction and Building Materials, Volume 75, 2015, Pages 306-314, ISSN 0950-0618. https://doi.org/10.1016/j.conbuildmat.2014.11.012

Palomar I, Barluenga G (2018). A multiscale model for pervious lime-cement mortar with perlite and cellulose fibers. Construction and Building Materials, 160: 136-144 https://doi.org/10.1016/j.conbuildmat.2017.11.032

Ramallo, L., Barluenga, G., Palomar, I. Thermal evaluation of low-carbon lime cement mortars with PCM for 3D printing architectural applications. In: 78th RILEM Annual Week & RILEM Conference on Sustainable Materials & Structures: Meeting the major challenges of the 21st century - SMS 2024. Conference Proceedings, RILEM (2024).

UNE EN (2000). UNE EN 197-1. Cement - Part 1: Composition, specifications and conformity criteria for common cements. AENOR.

UNE-EN (2003). UNE-EN 1015-18. Methods of test for mortar for masonry - Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar, AENOR.

UNE-EN (2007b). UNE-EN 1015-10:2000/A1. Methods of test for mortar for masonry - Part 10: Determination of dry bulk density of hardened mortar, AENOR

UNE EN (2011). UNE EN 459-1. Building lime - Part 1: Definitions, specifications and conformity criteria. AENOR.

Yang, S., Ukrainczyk, N., Caggiano, A., & Koenders, E. (2021). Numerical phase-field model validation for dissolution of minerals. Applied Sciences, 11(6), 2464. https://doi.org/10.3390/app11062464

Zhou J (2011). Performance of engineered cementitious composites for concrete repairs. PhD Thesis, Delft University of Technology, the Netherlands.

Descargas

Publicado

2025-12-07

Número

Sección

Artículos completos del congreso MECOM 2025