Experimental Results and Numerical Analysis of Capillary Water Absorption of Lime-Cement Mortars with PCM and Cellulose Fibres for 3DP Applications
DOI:
https://doi.org/10.70567/mc.v42.ocsid8394Palabras clave:
Moisture Transport Phenomena, Lime-cement mortar, PCM, Cellulose Fibers, FEM, 3D-printingResumen
This study analyses the moisture transport phenomena of 3D printing lime-cement mortars with Phase Change Materials (PCM) and Cellulose Fibers (F) for architectural applications comparing experimental results and numerical analysis. A lime-cement control mortar was designed and cellulose fibers and different percentages of PCM (10, 20 and 30%) were added, leading to a total of eight different mixtures. Physical and mechanical characterization tests were performed on mortar samples and capillary water absorption tests were carried out over time for 24h. Based on the experimental results, the computational Moisture Diffusion model, a nonlinear FEM model, was used. Further transport phenomena will be addressed in successive works.
Citas
Aligizaki K (2005). Pore Structure of Cement-Based Materials. London: CRC Press https://doi.org/10.1201/9781482271959
BASF (2013). BASF Datasheet. Micronal PCM DS 5040 X, 11/2013
Caggiano A, Schicchi DS, Mankel C, Ukrainczyk N, Koenders EAB (2018). A mesoscale approach for modeling capillary water absorption and transport phenomena in cementitious materials. Computers & Structures, 200: 1-10 https://doi.org/10.1016/j.compstruc.2018.01.013
Fachinotti, V. D., Peralta, I., Toro, S., Storti, B. A., & Caggiano, A. (2023). Automatic generation of high-fidelity representative volume elements and computational homogenization for the determination of thermal conductivity in foamed concretes. Materials and Structures, 56(10), 179. https://doi.org/10.1617/s11527-023-02253-2
Guardia, C., Schicchi, D.S., Caggiano, A. et al. On the capillary water absorption of cementlime mortars containing phase change materials: Experiments and simulations. Build. Simul. 13, 19-31 (2020). https://doi.org/10.1007/s12273-019-0556-y
Isgor OB, Razaqpur AG (2004). Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures. Cement and Concrete Composites, 26: 57-73 https://doi.org/10.1016/S0958-9465(02)00125-7
Maekawa K, Chaube R, Kishi T, (2014). Modelling of Concrete Performance: Hydration, Microstructure and Mass Transport. London: CRC Press.
Mankel C, Caggiano A, Ukrainczyk N, Koenders E (2019). Thermal energy storage characterization of cement-based systems containing Microencapsulated-PCMs. Construction and Building Materials, 199: 307-320 https://doi.org/10.1016/j.conbuildmat.2018.11.195
Martín-Pérez B, Pantazopoulou SJ, Thomas MDA (2001). Numerical solution of mass transport equations in concrete structures. Computers & Structures, 79: 1251-1264 https://doi.org/10.1016/S0045-7949(01)00018-9
Márquez, Á., Ramallo, L., Varela, H., Barluenga, G., Puentes, J. 3D Printing Architectural Applications of cement-lime mortars with microencapsulated Phase Change Mate-rials (PCM). In: Digital Concrete 2024 - Supplementary Proceedings (2024).
Palomar, I., Barluenga, G., Puentes, J. Lime-cement mortars for coating with improved thermal and acoustic performance, Construction and Building Materials, Volume 75, 2015, Pages 306-314, ISSN 0950-0618. https://doi.org/10.1016/j.conbuildmat.2014.11.012
Palomar I, Barluenga G (2018). A multiscale model for pervious lime-cement mortar with perlite and cellulose fibers. Construction and Building Materials, 160: 136-144 https://doi.org/10.1016/j.conbuildmat.2017.11.032
Ramallo, L., Barluenga, G., Palomar, I. Thermal evaluation of low-carbon lime cement mortars with PCM for 3D printing architectural applications. In: 78th RILEM Annual Week & RILEM Conference on Sustainable Materials & Structures: Meeting the major challenges of the 21st century - SMS 2024. Conference Proceedings, RILEM (2024).
UNE EN (2000). UNE EN 197-1. Cement - Part 1: Composition, specifications and conformity criteria for common cements. AENOR.
UNE-EN (2003). UNE-EN 1015-18. Methods of test for mortar for masonry - Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar, AENOR.
UNE-EN (2007b). UNE-EN 1015-10:2000/A1. Methods of test for mortar for masonry - Part 10: Determination of dry bulk density of hardened mortar, AENOR
UNE EN (2011). UNE EN 459-1. Building lime - Part 1: Definitions, specifications and conformity criteria. AENOR.
Yang, S., Ukrainczyk, N., Caggiano, A., & Koenders, E. (2021). Numerical phase-field model validation for dissolution of minerals. Applied Sciences, 11(6), 2464. https://doi.org/10.3390/app11062464
Zhou J (2011). Performance of engineered cementitious composites for concrete repairs. PhD Thesis, Delft University of Technology, the Netherlands.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos trabajos que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.

