Tau Method Applied to a Two-Phase Stefan Problem with Variable Thermal Coefficients
DOI:
https://doi.org/10.70567/mc.v41i15.78Palabras clave:
Variable thermal coefficients, Stefan problem, similarity-type solution, Tau methodResumen
A two-phase Stefan problem for a semi-infinite material with power-type temperature dependent thermal coefficients is considered. By using the similarity transformation, an equivalent ordinary differential problem is obtained. On one hand, the existence and uniqueness of the solution are proved by imposing a Dirichlet boundary condition at the fixed face. On the other hand, approximate solutions are obtained using the Tau method, which is based on the shifted Chebyshev operational matrix of differentiation. For the particular case that arises when considering constant thermal coefficients, the exact solution available in the literature is compared with the approximate one in order to test the accuracy of the employed approximation method.
Citas
Abdelhamied D., Abdelhakem M., El-Kady M., y Youssri M. Adapted Shifted ChebyshevU Operational Matrix of Derivates: Two Algorithms for Solving Even-Order BVPs. Applied Mathematics and Information, 17(3):575-581, 2023. https://doi.org/10.18576/amis/170318
AliAbadi M. y Ortiz E. Numerical treatment of moving and free boundary value problems with the tau method. Computers and Mathematics with Applications, 35(8):53 - 61, 1998. https://doi.org/10.1016/S0898-1221(98)00044-3
Bollati J., Natale M.F., Semitiel J.A., y Tarzia D.A. A two-phase Stefan problem with powertype temperature-dependent thermal conductivity. Existence of a solution by two fixed points and numerical results. AIMS Mathematics, 9:21189-21211, 2024. https://doi.org/10.3934/math.20241029
Bougoffa L., Bougouffa S., y Khanfer A. An Analysis of the One-Phase Stefan Problem with Variable Thermal Coefficients of Order p. Axioms, 12, 2023. https://doi.org/10.3390/axioms12050497
Hesameddini E. y Riahi M. Shifted Chebyshev polynomial method for solving systems of linear and nonlinear Fredhom-Volterra integro-differential equations. Journal of Mathematical Extension, 12(3):55-79, 2018.
Kumar A., Singh A.K., y Rajeev R. A Stefan problem with variable thermal coefficients and moving phase change material. Journal of King Saud University Science, 31:1064-1069, 2019. https://doi.org/10.1016/j.jksus.2018.09.009
Kumar A., Singh A.K., y Rajeev R. A moving boundary problem with variable specific heat and thermal conductivity. Journal of King Saud University - Science, 32:384-389, 2020. https://doi.org/10.1016/j.jksus.2018.05.028
Lanczos C. Trigonometric interpolation of empirical and analytical functions. Studies in Applied Mathematics, 17(1-4):123 - 199, 1938. doi:10.1002/sapm1938171123. https://doi.org/10.1002/sapm1938171123
Ortiz E.L. The tau method. SIAM Journal on Numerical Analysis, 6(3):480-492, 1969. https://doi.org/10.1137/0706044
Raslan K., Ali K., Mohamed E., Younis J., y Abd El salam M. An Operational Matrix Technique Based on Chebyshev Polynomials for Solving Mixed Volterra-Fredholm Delay Integro-Differential Equations of Variable-Order. Journal of Function Spaces, 2022(6203440):1-15, 2022. https://doi.org/10.1155/2022/6203440
Sahlan M. y Feyzollahzadeh H. Operational matrices of Chebyshev polynomials for solving singular Volterra integral equations. Mathematical Sciences, 11:165-171, 2017. https://doi.org/10.1007/s40096-017-0222-4
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos trabajos que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.