Modeling of CR Coated ZR Alloys for Advanced Technology Fuels
DOI:
https://doi.org/10.70567/mc.v41i18.93Keywords:
DIONISIO, fuel rods, ATF, coated claddings, FEMAbstract
Since few decades, development of nuclear fuels with paradigms based on new safety parameters has begun, which is why they enter the so-called advanced technology fuels. The basis of these designs consists of implementing any improvement that allows improving safety margins of a nuclear reactor. The IAEA leads an internationally coordinated research project, "Testing and Simulation for Advanced Technology and Accident Tolerant Fuels"(CRP ATF-TS), which promotes experimentation and modeling of this type of fuels. National Atomic Energy Commission, through Codes and Models Section, contributes to this project by integrating a library of ATF materials in the DIONISIO 3.0 code. Several materials have been studied so far, however, this work focuses on Cr coated Zr alloys claddings, which aim to improve safety by avoiding failure of the first containment barrier due to oxidation and hydridation mechanisms. In this way, advances in inclusion of models for these claddings are presented and compared with experimental data from the ATF-TS project.
References
Cardinaels T., Govers K., Vos B., Van den Berghe S., Verwerft M., de Tollenaere L., Maier G., y Delafoy C. Chromia doped UO2 fuel: Investigation of the lattice parameter. Journal of Nuclear Materials, 424(1):252-260, 2012. ISSN 0022-3115. https://doi.org/10.1016/j.jnucmat.2012.02.025
Daub K., Van Nieuwenhove R., y Nordin H. Investigation of the impact of coatings on corrosion and hydrogen uptake of Zircaloy-4. Journal of Nuclear Materials, 467:260-270, 2015. ISSN 0022-3115. doi:10.1016/j.jnucmat.2015.09.041. https://doi.org/10.1016/j.jnucmat.2015.09.041
Delafoy C., Arimescu V.I., Hengstler-Eger R.M., Landskron H., Moeckel A., y Bellanger P. AREVA Cr2O3-doped fuel: Increase in operational flexibility and licensing margins. En Proceedings of the Top Fuel 2015 - Reactor Fuel Performance meeting. Zurich, 2015.
EK. Proposal for the codex-atf test in the framework of the iaea atf-ts project. Informe Técnico, Centre for Energt Research (EK), 2022.
Goldberg E., Cazado M.E., Loza Peralta M.E., y Soba A. New module for simulating experiments without irradiation included in the DIONISIO 3.0 code. Nuclear Engineering and Design, 374:111067, 2021. ISSN 0029-5493. https://doi.org/10.1016/j.nucengdes.2021.111067
Kakiuchi K., Okonogi K., Uchihashi M., Ukai M., Sebe F., Takeuchi Y., Ogawa T., Matsumiya H., y Suyama S. Progress on ATF development of SiC for LWR, 2016.
Kim H.G., Kim I.H., Jung Y.I., Park D.J., Park J.Y., y Koo Y.H. Adhesion property and hightemperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating. Journal of Nuclear Materials, 465:531-539, 2015. ISSN 0022-3115. https://doi.org/10.1016/j.jnucmat.2015.06.030
Lahoda E.J. y Boylan F.A. Development of LWR Fuels with Enhanced Accident Tolerance. Informe Técnico DOE/NE-0000566,Westinghouse Electric Company, LLC, CranberryWoods, PA (United States), 2015. doi:10.2172/1233713. https://doi.org/10.2172/1233713
Lemes M., Soba A., y Denis A. An empirical formulation to describe the evolution of the high burnup structure. Journal of Nuclear Materials, 456:174-181, 2015. https://doi.org/10.1016/j.jnucmat.2014.09.048
Liu G., Zhang G.J., Jiang F., Ding X.D., Sun Y.J., Sun J., y Ma E. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nature Materials, 12(4):344-350, 2013. ISSN 1476-4660. doi:10.1038/nmat3544. Number: 4 Publisher: Nature Publishing Group. https://doi.org/10.1038/nmat3544
Ma Z., Shirvan K., Wu Y., y Su G.H. Numerical investigation of ballooning and burst for chromium coated zircaloy cladding. Nuclear Engineering and Design, 383:111420, 2021. ISSN 0029-5493. https://doi.org/10.1016/j.nucengdes.2021.111420
Malone J., Totemeier A., Shapiro N., y Vaidyanathan S. Lightbridge Corporation's Advanced Metallic Fuel for Light Water Reactors. Nuclear Technology, 180(3):437-442, 2012. Publisher: American Nuclear Society. https://doi.org/10.13182/NT12-A15354
NEA. Nuclear Fuel Behaviour in Loss-of-coolant Accident (LOCA) Conditions. 6846. Nuclear Energy Agency, Paris, 2009. ISBN 978-92-64-99091-3.
NEA. Nuclear Fuel Behaviour under Reactivity-initiated Accident (RIA) Conditions. OECD Publishing, Paris, 2010.
Nishikawa S., Fujii H., Tsuchiuchi Y., Novo Sanjurjo M., y Alonso J.M. J-alloyTM, advanced PWR fuel cladding material; Program of J-alloyTM development. Florida, 2010.
Pasamehmetoglu K., Massara S., Costa D., Bragg-Sitton S., Moatti M., Kurata M., Iracane D., Ivanova T., Bischoff J., Delafoy C., Brachet J., Chauvin J., Coulon-Picard E., Forgeron T., Gonnier C., Lorrette C., Bragg-Sitton S., Cheng B., Csontos A., Sowder A., Topbasi C., Yueh K., Cozzo C., Pouchon M., Dolley E., Rebak R., Gassmann W., Hania R., Heuser B., Kakiuchi K., Katoh Y., Terrani K., Kim H., Kim W., Koo Y., Yang J., Kohyama A., Kurata M., Lahoda E., Xu P., Li R., Liu T., Zhou W., Linhart S., Rehacek R., Moatti M., Pouillier E., Waeckel N., Ohta H., Pasamehmetoglu K., Petit M., Puide M., Wright J., Sakamoto K., Savchenko A., Sevecek M., Steinbrueck M., Tang C., Tulenko J., Van Nieuwenhove R., Vernon E., Verwerft M., y Zvonarev Y. State-of-the-Art Report on Light Water Reactor Accident-Tolerant Fuels. Informe Técnico, NEA, Nuclear Energy Agency of the OECD (NEA), 2018. NEA-7317 INIS Reference Number: 50015394.
Sakamoto K., Hirai M., Ukai S., Kimura A., Yamaji A., Kusagaya K., Kondo T., y Yamashita S. Overview of Japanese development of accident tolerant FeCrAl-ODS fuel claddings for BWRs. En Proceedings of 2017 Water Reactor Fuel Performance Meeting (WRFPM 2017). Jeju, Korea, 2017.
Soba A. y Denis A. Dionisio 2.0: New version of the code for simulating a whole nuclear fuel rod under extended irradiation. Nuclear Engineering and Design, 292:213-221, 2015. Spreadsheet. Modeling Benchmark for Cr coated Zr, 2022. https://doi.org/10.1016/j.nucengdes.2015.06.008
Tang C., Steinbrück M., Große M., Jianu A., Weisenburger A., y Seifert H. High-temperature oxidation behavior of Kanthal APM and D alloys in steam, 2016.
TECDOC-1434. IAEA-TECDOC-1434: Methodology for the Assessment of Innovative Nuclear Reactors and Fuel Cycles Report of Phase 1B (first part) of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). número 1434 En TECDOC Series. International Atomic Energy Agency, Vienna, 2004. ISBN 92-0-116304-5. Toshiba. SiC reactor core material, 2015.
Wagih M., Spencer B., Hales J., y Shirvan K. Fuel performance of chromium-coated zirconium alloy and silicon carbide accident tolerant fuel claddings. Annals of Nuclear Energy, 120:304-318, 2018. ISSN 0306-4549. https://doi.org/10.1016/j.anucene.2018.06.001
Zinkle S.J., Terrani K.A., Gehin J.C., Ott L.J., y Snead L.L. Accident tolerant fuels for LWRs: A perspective. Journal of Nuclear Materials, 448(1):374-379, 2014. ISSN 0022-3115. https://doi.org/10.1016/j.jnucmat.2013.12.005
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.