Construcción de un Modelo CFD para la Pirólisis de Cuttings en Unidades Fluidizadas

Autores

  • Andrés Reyes Urrutia Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN (CONICET-Universidad Nacional del Comahue). Neuquén, Argentina.
  • César M. Venier Instituto de Física de Rosario (UNR, CONICET) & Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Escuela de Ingeniería Mecánica. Rosario, Argentina.
  • Erick Torres Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN (CONICET-Universidad Nacional del Comahue). Neuquén, Argentina.
  • Alberto Blasetti Universidad Nacional de la Patagonia San Juan Bosco, Facultad de Ingeniería. Comodoro Rivadavia, Provincia de Chubut, Argentina.
  • Gastón G. Fouga Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, Departamento de Fisicoquímica y Control de Calidad, Complejo Tecnológico Pilcaniyeu & CONICET. Bariloche, Argentina.
  • Rosa Ana Rodríguez Instituto de Ingeniería Química, Facultad de Ingeniería (UNSJ) - Grupo Vinculado al PROBIEN (CONICET-UNCo). San Juan, Argentina.
  • Germán D. Mazza Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN (CONICET-Universidad Nacional del Comahue). Neuquén, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i21.112

Palavras-chave:

Oil Based Drill Cuttings, Pirólisis, CFD, OpenFOAM, MFiX

Resumo

En este trabajo se presentan resultados de la caracterización fisicoquímica de los recortes junto al análisis termogravimétrico, ambos necesarios para una etapa posterior de simulación. Además, se presentan resultados de la construcción de un modelo CFD con diferentes software (MFiX, OpenFOAM), con incorporación de efectos térmicos que abarca desde la fluidodinámica y la transferencia de calor, hasta la pirólisis misma. La validación de cada parte fundamental del modelo integral, se lleva a cabo con datos de diferentes sistemas fluidizados tomados de la bibliografía. Aunque la validación específica para el sistema fluidizado conformado por cuttings forma parte de una etapa posterior, el modelo construido, resulta flexible por lo que su adecuación al sistema de interés debería ser directa, con mínimas adecuaciones.

Referências

Casadio, S., Geología de la Cuenca Neuquina y sus sistemas petroleros: una mirada integradora desde los afloramientos al subsuelo. 1era. Edición. Buenos Aires. Fundación YPF. Viedma. Universidad Nacional de Río Negro, 2015.

Hou Y., Qi S., You H., Huang Z., Niu Q., The study on pyrolysis of oil-based drilling cuttings by microwave and electric heating. Journal of Environmental Management 228, 312-318, 2018. https://doi.org/10.1016/j.jenvman.2018.09.040

US EPA. SW-846 Test Method 3540C: Soxhlet Extraction, 1996. United States Environmental Protection Agency. SW 846 Test Method 9071B: N-hexane extractable material (HEM) for sludge, sediment, and solid samples, 1998.

Özçimen, D., Karaosmanoglu, F., Production and characterization of bio-oil and biochar from rapeseed cake. Renewable energy, 29(5), pp.779-787, 2004. https://doi.org/10.1016/j.renene.2003.09.006

Xu, T., Zhang, H., Zhan, X. and Wang, Y., Pyrolysis kinetics and environmental risks of oilbased drill cuttings at China's largest shale gas exploitation site. Ecotoxicology and Environmental Safety, 246, p.114189, 2022. https://doi.org/10.1016/j.ecoenv.2022.114189

Herrero Ducloux, A., Reconocimiento de la zona situada entre la vía férrea, el río Neuquén y el meridiano de Plaza Huincul. Yacimientos Petrolíferos Fiscales. 23pp, 1938.

Shen, Y.J., Hou, X., Yuan, J.Q., Wang, S.F. and Zhao, C.H., Thermal cracking characteristics of high-temperature granite suffering from different cooling shocks. International Journal of Fracture, 225, pp.153-168, (2020). https://doi.org/10.1007/s10704-020-00470-2

Sia, S.Q. and Wang, W.C., 2020. Numerical simulations of fluidized bed fast pyrolysis of biomass through computational fluid dynamics. Renewable Energy, 155, pp.248-256. https://doi.org/10.1016/j.renene.2020.03.134

Gidaspow, D. Multiphase flow and fluidization: continuum and kinetic theory descriptions. Academic press, 1994.

Zehner, P.; Schlünder, E. Thermal conductivity of packings at moderate temperatures. Chem. Ing. Tech. 1970, 42, 933. https://doi.org/10.1002/cite.330421408

Gunn, D. Transfer of heat or mass to particles in fixed and fluidised beds. Int. J. Heat Mass Transf. 1978, 21, 467-476. https://doi.org/10.1016/0017-9310(78)90080-7

Geldart, D. Types of gas fluidization. Powder Technol. 1973, 7, 285-292. https://doi.org/10.1016/0032-5910(73)80037-3

Subramani, H.J.; Balaiyya, M.M.; Miranda, L.R. Minimum fluidization velocity at elevated temperatures for Geldart's group-B powders. Exp. Therm. Fluid Sci. 2007, 32, 166-173. https://doi.org/10.1016/j.expthermflusci.2007.03.003

Yusuf, R.; Halvorsen, B.; Melaaen, M.C. An experimental and computational study of wall to bed heat transfer in a bubbling gas-solid fluidized bed. Int. J. Multiph. Flow 2012, 42, 9-23. https://doi.org/10.1016/j.ijmultiphaseflow.2012.01.003

Publicado

2024-11-08

Edição

Seção

Artigos completos da conferência MECOM 2024