Soluciones Analíticas y Numéricas para un Problema de Transferencia de Calor en Materiales Bicapa

Autores

  • Domingo A. Tarzia Universidad Austral, Facultad de Ciencias Empresariales, Departamento de Matemática & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Rosario, Argentina.
  • Guillermo F. Umbricht Universidad Austral, Facultad de Ciencias Empresariales, Departamento de Matemática & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Rosario, Argentina.
  • Diana Rubio Instituto de Tecnologías Emergentes y Ciencias Aplicadas (UNSAM-CONICET), Centro de Matemática Aplicada, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín. San Martín, Provincia de Buenos Aires, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i21.113

Palavras-chave:

Transferencia de calor, Materiales compuestos, Resistencia térmica

Resumo

Este artículo presenta un análisis teórico de un problema de transferencia de calor unidimensional en un material bicapa con difusión, advección, generación o pérdida de calor interna linealmente dependiente de la temperatura en cada capa, y generación de calor debido a fuentes externas. Además, se considera la resistencia térmica ofrecida por la interfaz entre los materiales. La situación de interés se modela matemáticamente, se encuentran soluciones analíticas explícitas utilizando técnicas de Fourier, y se formula un esquema de diferencias finitas convergente para simular casos particulares. La solución es coherente con resultados previos. Se incluye un ejemplo numérico que muestra coherencia entre los resultados obtenidos y la física del problema. Las conclusiones extraídas en este trabajo amplían la comprensión teórica de la transferencia de calor en materiales bicapa y también pueden contribuir a mejorar el diseño térmico de sistemas de ingeniería multicapa.

Referências

Bandhauer T., Garimella S., y Fuller T. A critical review of

thermal issues in lithium-ion batteries. J. Electrochem. Soc.,

158(3):R1-R25, 2011. https://doi.org/10.1149/1.3515880

Becker S. Analytic one dimensional transient conduction into a

living perfuse/non-perfuse two layer composite system. Heat Mass

Transfer, 48:317-327, 2012.

https://doi.org/10.1007/s00231-011-0886-5

Becker S. y Herwing H. One dimensional transient heat conduction in

segmented fin-like geometries with distinct discrete peripheral

convection. Int. J. Therm. Sci., 71:148-162, 2013.

https://doi.org/10.1016/j.ijthermalsci.2013.04.004

Carson J. Modelling thermal diffusivity of heterogeneous materials

based on thermal diffusivities of components with implications for

thermal diffusivity and thermal conductivity measurement. Int. J.

Thermophys., 43(108), 2022.

https://doi.org/10.1007/s10765-022-03037-6

Caunce J., Barry S., y Mercer G. A spatially dependent model for

washing wool. Appl. Math. Model., 32(4):389-404, 2008.

https://doi.org/10.1016/j.apm.2006.12.010

Choobineh L. y Jain A. An explicit analytical model for rapid

computation of temperature field in a three-dimensional integrated

circuit (3d ic). Int. J. Therm. Sci., 87:103-109, 2015.

https://doi.org/10.1016/j.ijthermalsci.2014.08.012

Dias C. A method of recursive images to solve transient heat

diffusion in multilayer materials. Int. J. Heat Mass Transfer,

85:1075-1083, 2015.

https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.138

Esho I., Shah K., y Jain A. Measurements and modeling to determine

the critical temperature for preventing thermal runaway in li-ion

cells. Appl. Therm. Eng., 145:287-294, 2018.

https://doi.org/10.1016/j.applthermaleng.2018.09.016

Hickson R., Barry S., y Mercer G. Critical times in multilayer

diffusion. part 1: exact solutions.Int. J. Heat Mass Transfer,

52:5776-5783, 2009.

https://doi.org/10.1016/j.ijheatmasstransfer.2009.08.013

Jain A., Zhou L., y Parhizi M. Multilayer one-dimensional

convection-diffusion-reaction (cdr) problem: Analytical solution

and imaginary eigenvalue analysis. Int. J. Heat Mass Transfer,

177:121465, 2021.

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121465

Johansson B. y Lesnic D. A method of fundamental solutions for

transient heat conduction in layered materials. Eng. Anal. Boundary

Elem., 33(12):1362-1367, 2009.

https://doi.org/10.1016/j.enganabound.2009.04.014

Kim A. Complete analytic solutions for

convection-diffusion-reaction-source equations without using an

inverse laplace transform. Sci. Rep., 10:8040, 2020.

https://doi.org/10.1038/s41598-020-63982-w

Liu C. y Ball W. Analytical modeling of diffusion-limited

contamination and decontamination in a two-layer porous medium.

Adv. Water. Resour., 21(4):297-313, 1998.

https://doi.org/10.1016/S0309-1708(96)00062-0

Liu G. y Si B. Analytical modeling of one-dimensional diffusion in

layered systems with position-dependent diffusion coefficients.

Adv. Water. Resour., 31(2):251-268, 2008.

https://doi.org/10.1016/j.advwatres.2007.08.008

Liu G. y Si B. Multi-layer diffusion model and error analysis

applied to chamber-based gasfluxes measurements. Agric. For.

Meteorol., 149(1):169-178, 2009.

https://doi.org/10.1016/j.agrformet.2008.07.012

Mantzavinos D., Papadomanolaki M., Saridakis Y., y Sifalakis A.

Fokas transform method for a brain tumor invasion model with

heterogeneous diffusion in 1 + 1 dimensions. Appl. Numer.Math.,

104:47-61, 2016. https://doi.org/10.1016/j.apnum.2014.09.006

McGinty S., McKee S., Wadsworth R., y McCormick C. Modelling

drug-eluting stents. Math.Med. Biol., 28(1):1-29, 2011.

https://doi.org/10.1093/imammb/dqq003

Mitragotri S., Anissimov Y., Bunge A., Frasch H., Guy R., Hadgraft

J., Kasting G., Lane M., y Roberts M. Mathematical models of skin

permeability: An overview. Int. J. Pharm.,418(1):115-129, 2011.

https://doi.org/10.1016/j.ijpharm.2011.02.023

Monte F.d. Transient heat conduction in one-dimensional composite

slab. a 'natural' analytic approach. Int. J. Heat Mass Transfer,

43(19):3607-3619, 2000.

https://doi.org/10.1016/S0017-9310(00)00008-9

Monte F.d. An analytic approach to the unsteady heat conduction

processes in one-dimensional composite media. Int. J. Heat Mass

Transfer, 45(6):1333-1343, 2002.

https://doi.org/10.1016/S0017-9310(01)00226-5

Pasupuleti R., Wang Y., Shabalin I., Li L., Liu Z., y Grove S.

Modelling of moisture diffusion in multilayer woven fabric

composites. Comput. Mater. Sci., 50(5):1675-1680, 2011.

https://doi.org/10.1016/j.commatsci.2010.12.028

Pennes H., Shah K., y Jain A. Analysis of tissue and arterial blood

temperature in the resting human forearm. J. Appl. Phys.,

1(2):93-122, 1948. https://doi.org/10.1152/jappl.1948.1.2.93

Rodrigo M. y Worthy A. Solution of multilayer diffusion problems

via the laplace transform.J. Math. Anal. Appl., 444(1):475-502,

2016. https://doi.org/10.1016/j.jmaa.2016.06.042

Rubio D., Tarzia D., y Umbricht G. Heat transfer process with

solid-solid interface: Analytical and numerical solutions. WSEAS

trans. Math., 20:404-414, 2021.

https://doi.org/10.37394/23206.2021.20.42

Rubio D., Umbricht G., Saintier N., Morvidone M., y Tarzia D.

Non-invasive study to determine changes in physical properties of

multilayer materials. MRS. Adv., 7:1115-1119, 2022.

https://doi.org/10.1557/s43580-022-00463-4

Shah K., Chalise D., y Jain A. Experimental and theoretical

analysis of a method to predict thermal runaway in li-ion cells. J.

Power Sources, 330:167-174, 2016.

https://doi.org/10.1016/j.jpowsour.2016.08.133

Skyllas-Kazacos M., Chakrabarti M., Hajimolana S., Mjalli F., y

Saleem M. Progress in flow battery research and development. J. Electrochem. Soc., 158(8):R55-R79, 2011. https://doi.org/10.1149/1.3599565

Umbricht G. y Rubio D. Optimal estimation of thermal diffusivity in an energy transfer problem. WSEAS trans. Fluid Mech., 16:222-231, 2021. https://doi.org/10.37394/232013.2021.16.21

Umbricht G., Rubio D., Echarri R., y Hasi C.E. A technique to estimate the transient coefficient of heat transfer by convection. Lat. Am. Appl. Res., 50(3):229-234, 2020a. https://doi.org/10.52292/j.laar.2020.179

Umbricht G., Rubio D., y Tarzia D. Estimation technique for a contact point between two materials in a stationary heat transfer problem. Math. Modell. Eng. problem, 7(4):607-613, 2020b. https://doi.org/10.18280/mmep.070413

Umbricht G., Rubio D., y Tarzia D. Estimation of a thermal conductivity in a stationary heat transfer problem with a solid-solid interface. Int. J. Heat. Technol., 39(2):337-344, 2021. https://doi.org/10.18280/ijht.390202

Umbricht G., Rubio D., y Tarzia D. Determination of thermal conductivities in multilayer materials. WSEAS trans. Heat Mass Transfer, 17:188-195, 2022a. https://doi.org/10.37394/232012.2022.17.20

Umbricht G., Tarzia D., y Rubio D. Determination of two homogeneous materials in a bar with solid-solid interface. Math. Modell. Eng. problem, 9(3):568-576, 2022b. https://doi.org/10.18280/mmep.090302

Yavaraj R.and Senthilkumar D. Numerical analysis of non-fourier heat conduction dynamics in the composite layer. J. Mech. Eng. Sci., 17(3):9597-9615, 2023. https://doi.org/10.15282/jmes.17.3.2023.6.0760

Yuan W.b., Yu N., Li L.y., y Fang Y. Heat transfer analysis in multi-layered materials with interfacial thermal resistance. Compos. Struct., 293(1):115728, 2022.https://doi.org/10.1016/j.compstruct.2022.115728

Zhou L., Parhizi M., y Jain A. Theoretical modeling of heat transfer in a multilayer rectangular body with spatially-varying convective heat transfer boundary condition. Int. J. Therm. Sci., 170:107156, 2021. https://doi.org/10.1016/j.ijthermalsci.2021.107156

Publicado

2024-11-08

Edição

Seção

Artigos completos da conferência MECOM 2024

Artigos mais lidos pelo mesmo(s) autor(es)