Hybrid Neural Network-Based Approach for the Estimation of Sound Levels under Variable Meteorological Conditions

Authors

  • Martin E. Sequeira Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca, Centro de Investigaciones en Mecánica Teórica y Aplicada. Bahía Blanca, Argentina.
  • Lucas E. Di Giorgio Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca, Centro de Investigaciones en Mecánica Teórica y Aplicada. Bahía Blanca, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8370

Keywords:

Hybrid model, sound propagation, meteorological effect

Abstract

A hybrid methodology is presented that combines artificial neural networks with the semiempirical acoustic propagation model of ISO 9613-2, with the aim of estimating the sound level at a receiver while accounting for the influence of local meteorological variables. Two scenarios are distinguished: calm conditions (no wind), where the ISO model is used as a reference, and windy conditions, where real measurements are employed. The network is trained using a mixed loss function that combines the fit to measurements under wind conditions with a penalty term for deviations from the structure of the reference model. In addition, functional constraints are incorporated on the wind dependence for extreme velocity values, adopting a sigmoid-like form as reported in the literature. This approach balances the predictive power of data-driven models with a reference structure guided by physical principles, yielding a regularized surrogate model with reduced dependence on large data volumes.

References

Di Giorgio, L. E. y Sequeira, M. E. Estimación de los efectos del viento en la medición de ruido urbano utilizando lógica difusa. Mecánica Computacional, 41:23-31, 2024.

Goodfellow, I., Bengio, Y. y Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.

Hohenwarter, D., Mursch-Radlgruber, E. y Kirisits, C. S-shaped dependence of the sound pressure level in outdoor propagation on the effective sound speed gradient. Acta Acustica, 6, 13, 2022. https://doi.org/10.1051/aacus/2022005

ISO 9613-2, Acoustics – Attenuation of Sound During Propagation Outdoors – Part 2: General Method of Calculation, 1996.

Jul-Rasmussen, P., Kumar, M., Pinto, J., Oliveira, R., Liang, X. y Huusom, J. K. Incorporating first-principles information into hybrid modeling structures: Comparing hybrid semiparametric models with Physics-Informed Recurrent Neural Networks. Computers & Chemical Engineering, 199:109-119, 2025.https://doi.org/10.1016/j.compchemeng.2025.109119

Salomons, E. M. y Bakri, T. (2018). Fluctuating traffic noise levels calculated from time-dependent traffic data: an engineering approach. Noise Control Engineering Journal, 66, 5:432–445, 2018. https://doi.org/10.3397/1/376637

Sequeira, M. E., Di Giorgio, L. E., Azzurro, A. P. y Cortínez, V. H. Modelo Computacional para Caracterización Acústica de Zona Residencial Aledaña al Polo Industrial de la Ciudad de Bahía Blanca. Mecánica Computacional, 40(3):59-66, 2023a.

Sequeira M. E., Di Giorgio L. E., Azzurro A. P. y Cortínez V. H. Análisis del ruido ambiental en una zona residencial lindera a un parque industrial en la ciudad de Bahía Blanca. XVIII Congreso Argentino de Acústica, 6 pp., 6 y 7 de diciembre, Universidad Nacional de Quilmes, Bernal, Buenos Aires, 2023b.

Published

2025-11-27