Reinforced Concrete Pipes and Hybrid Fiber-Reinforced Pipes. Numerical Simulation of the Diametrical Compression Test
DOI:
https://doi.org/10.70567/mc.v42.ocsid8271Keywords:
Hybrid fibers, concrete pipes, numerical simulations, diametrical compression testAbstract
Hybrid Fiber Reinforced Concrete (HFRC), defined as concrete reinforced with two or more different types of fibers rationally combined, exhibits enhanced properties, particularly in terms of ductility and crack control. Its application in drainage pipes, as a partial or total substitute for traditional reinforcement, can have a favorable impact on the precast industry, both from technical and economic perspectives. This paper presents the numerical simulation of the Three-Edge Bearing Test (TEBT) to evaluate the mechanical behavior of reinforced concrete pipes (RCP) and hybrid fiber reinforced concrete pipes (HFRCP). Concrete reinforced with a combination of steel and polypropylene fibers is modeled as an equivalent homogeneous material with average properties (macroscopic model). The problem is solved using a nonlinear finite element code that incorporates a constitutive model with coupled damage and plasticity. Finally, the numerical results are compared with experimental data obtained from the fabrication and testing of nine pipes.
References
Al Rikabi F.T., Sargand S.M., y Kurdziel J. Evaluation of synthetic fiber reinforced concrete pipe performance using three-edge bearing test. Journal of Testing and Evaluation, 47(2):942- 958, 2018.https://doi.org/10.1520/JTE20170369
Barros J. y Figueiras J. Flexural behaviour of sfrc: Testing and modelling, asce j. mater. Civ. Eng, 11(8):331-339, 1999.https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(331)
Deng F., Ding X., Chi Y., Xu L., y Wang L. The pull-out behavior of straight and hookedend steel fiber from hybrid fiber reinforced cementitious composite: Experimental study and analytical modelling. Composite Structures, 206:693-712, 2018.https://doi.org/10.1016/j.compstruct.2018.08.066
Deng Z., Liu X., Chen P., de la Fuente A., Zhou X., Liang N., Han Y., y Du L. Basaltpolypropylene fiber reinforced concrete for durable and sustainable pipe production. part 1: Experimental program. Structural Concrete, 23(1):311-327, 2022.https://doi.org/10.1002/suco.202000759
Faisal A., Abbas S., Kazmi S.M.S., y Munir M.J. Development of concrete mixture for spuncast full-scale precast concrete pipes incorporating bundled steel and polypropylene fibers.
Materials, 16(2):512, 2023.https://doi.org/10.3390/ma16020512
fib model code. fib model code for concrete structures 2010. Ernst Sohn, Wiley, 2010. ISBN 9783433604090.
Foster S. y Voo J. Variable engagement model for fibre reinforced concrete in tension. University of New South Wales, Sydney, Australia, 2003.
González F. y Rougier V. Análisis experimental del comportamiento mecánico de tubos de hormigón reforzado con fibras híbridas. Informes de la Construcción, 74(565):e432-e432, 2022.https://doi.org/10.3989/ic.85975
González F.A. y Rougier V.C. Experimental study of the bearing capacity of hybrid fiberreinforced concrete pipes. Advanced Materials Research, 1182:53-62, 2024.https://doi.org/10.4028/p-Hd3fdU
IRAM-11503. Caños de hormigón armado no pretensado. destinados a la conducción de líquidos sin presión. 1987.
Lee S.C., Cho J.Y., y Vecchio F.J. Simplified diverse embedment model for steel fiber-reinforced concrete elements in tension. Materials Journal, 110(4):403-412, 2013.https://doi.org/10.14359/51685787
Li Z., Mobasher B., y Shah S.P. Characterization of interfacial properties in fiber-reinforced cementitious composites. Journal of the American Ceramic Society, 74(9):2156-2164, 1991.https://doi.org/10.1111/j.1151-2916.1991.tb08276.x
Mohamed N., Soliman A.M., y Nehdi M.L. Mechanical performance of full-scale precast steel fibre-reinforced concrete pipes. Engineering Structures, 84:287-299, 2015.https://doi.org/10.1016/j.engstruct.2014.11.033
Pakravan H., Latifi M., y Jamshidi M. Hybrid short fiber reinforcement system in concrete: A review. Construction and building materials, 142:280-294, 2017.https://doi.org/10.1016/j.conbuildmat.2017.03.059
Selim P. Experimental investigation of tensile behavior of high strength concrete. Indian Journal of Engineering and Materials Sciences, 11(15):467-472, 2008.
Singh N.K. y Rai B. Assessment of synergetic effect on microscopic and mechanical properties of steel-polypropylene hybrid fiber reinforced concrete. Structural Concrete, 22(1):516-534, 2021.https://doi.org/10.1002/suco.201900166
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.

