Reinforced Concrete Pipes and Hybrid Fiber-Reinforced Pipes. Numerical Simulation of the Diametrical Compression Test

Authors

  • Federico A. González Universidad Tecnológica Nacional, Facultad Regional Concepción del Uruguay, Grupo de Investigación en Mecánica Computacional y Estructuras (GIMCE). Concepción del Uruguay, Argentina.
  • Viviana C. Rougier Universidad Tecnológica Nacional, Facultad Regional Concepción del Uruguay, Grupo de Investigación en Mecánica Computacional y Estructuras (GIMCE). Concepción del Uruguay, Argentina.
  • Facundo A. Retamal Universidad Tecnológica Nacional, Facultad Regional Concepción del Uruguay, Grupo de Investigación en Mecánica Computacional y Estructuras (GIMCE). Concepción del Uruguay, Argentina.
  • Miqueas C. Denardi Universidad Tecnológica Nacional, Facultad Regional Concepción del Uruguay, Grupo de Investigación en Mecánica Computacional y Estructuras (GIMCE). Concepción del Uruguay, Argentina. & Universidad Tecnológica Nacional, Facultad Regional Concordia. Concordia, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8271

Keywords:

Hybrid fibers, concrete pipes, numerical simulations, diametrical compression test

Abstract

Hybrid Fiber Reinforced Concrete (HFRC), defined as concrete reinforced with two or more different types of fibers rationally combined, exhibits enhanced properties, particularly in terms of ductility and crack control. Its application in drainage pipes, as a partial or total substitute for traditional reinforcement, can have a favorable impact on the precast industry, both from technical and economic perspectives. This paper presents the numerical simulation of the Three-Edge Bearing Test (TEBT) to evaluate the mechanical behavior of reinforced concrete pipes (RCP) and hybrid fiber reinforced concrete pipes (HFRCP). Concrete reinforced with a combination of steel and polypropylene fibers is modeled as an equivalent homogeneous material with average properties (macroscopic model). The problem is solved using a nonlinear finite element code that incorporates a constitutive model with coupled damage and plasticity. Finally, the numerical results are compared with experimental data obtained from the fabrication and testing of nine pipes.

References

Al Rikabi F.T., Sargand S.M., y Kurdziel J. Evaluation of synthetic fiber reinforced concrete pipe performance using three-edge bearing test. Journal of Testing and Evaluation, 47(2):942- 958, 2018.https://doi.org/10.1520/JTE20170369

Barros J. y Figueiras J. Flexural behaviour of sfrc: Testing and modelling, asce j. mater. Civ. Eng, 11(8):331-339, 1999.https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(331)

Deng F., Ding X., Chi Y., Xu L., y Wang L. The pull-out behavior of straight and hookedend steel fiber from hybrid fiber reinforced cementitious composite: Experimental study and analytical modelling. Composite Structures, 206:693-712, 2018.https://doi.org/10.1016/j.compstruct.2018.08.066

Deng Z., Liu X., Chen P., de la Fuente A., Zhou X., Liang N., Han Y., y Du L. Basaltpolypropylene fiber reinforced concrete for durable and sustainable pipe production. part 1: Experimental program. Structural Concrete, 23(1):311-327, 2022.https://doi.org/10.1002/suco.202000759

Faisal A., Abbas S., Kazmi S.M.S., y Munir M.J. Development of concrete mixture for spuncast full-scale precast concrete pipes incorporating bundled steel and polypropylene fibers.

Materials, 16(2):512, 2023.https://doi.org/10.3390/ma16020512

fib model code. fib model code for concrete structures 2010. Ernst Sohn, Wiley, 2010. ISBN 9783433604090.

Foster S. y Voo J. Variable engagement model for fibre reinforced concrete in tension. University of New South Wales, Sydney, Australia, 2003.

González F. y Rougier V. Análisis experimental del comportamiento mecánico de tubos de hormigón reforzado con fibras híbridas. Informes de la Construcción, 74(565):e432-e432, 2022.https://doi.org/10.3989/ic.85975

González F.A. y Rougier V.C. Experimental study of the bearing capacity of hybrid fiberreinforced concrete pipes. Advanced Materials Research, 1182:53-62, 2024.https://doi.org/10.4028/p-Hd3fdU

IRAM-11503. Caños de hormigón armado no pretensado. destinados a la conducción de líquidos sin presión. 1987.

Lee S.C., Cho J.Y., y Vecchio F.J. Simplified diverse embedment model for steel fiber-reinforced concrete elements in tension. Materials Journal, 110(4):403-412, 2013.https://doi.org/10.14359/51685787

Li Z., Mobasher B., y Shah S.P. Characterization of interfacial properties in fiber-reinforced cementitious composites. Journal of the American Ceramic Society, 74(9):2156-2164, 1991.https://doi.org/10.1111/j.1151-2916.1991.tb08276.x

Mohamed N., Soliman A.M., y Nehdi M.L. Mechanical performance of full-scale precast steel fibre-reinforced concrete pipes. Engineering Structures, 84:287-299, 2015.https://doi.org/10.1016/j.engstruct.2014.11.033

Pakravan H., Latifi M., y Jamshidi M. Hybrid short fiber reinforcement system in concrete: A review. Construction and building materials, 142:280-294, 2017.https://doi.org/10.1016/j.conbuildmat.2017.03.059

Selim P. Experimental investigation of tensile behavior of high strength concrete. Indian Journal of Engineering and Materials Sciences, 11(15):467-472, 2008.

Singh N.K. y Rai B. Assessment of synergetic effect on microscopic and mechanical properties of steel-polypropylene hybrid fiber reinforced concrete. Structural Concrete, 22(1):516-534, 2021.https://doi.org/10.1002/suco.201900166

Published

2025-11-28

Issue

Section

Conference Papers in MECOM 2025