Influence of the Atmospheric Boundary Layer on the Shelter Effect for Crop Protection

Authors

  • Rodolfo Dematte Universidad Tecnológica Nacional, Facultad Regional Mendoza, Departamento de Ciencias Básicas, Unidad Investigativa de Epistemología, Lógica y Ciencias Básicas, Grupo IEMI. Mendoza, Argentina. https://orcid.org/0000-0002-2370-0080
  • Josefina Huespe Universidad Tecnológica Nacional, Facultad Regional Mendoza, Departamento de Ciencias Básicas, Unidad Investigativa de Epistemología, Lógica y Ciencias Básicas, Grupo IEMI. Mendoza, Argentina. https://orcid.org/0000-0003-0016-5991
  • Solange Feldman Universidad Tecnológica Nacional, Facultad Regional Mendoza, Departamento de Ciencias Básicas, Unidad Investigativa de Epistemología, Lógica y Ciencias Básicas, Grupo IEMI. Mendoza, Argentina. https://orcid.org/0009-0009-6981-8648
  • Pablo A. Caron Universidad Tecnológica Nacional, Facultad Regional Haedo, Grupo de Mecánica de Fluidos. Haedo, Provincia de Buenos Aires, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8305

Keywords:

Shelter effect, Atmospheric boundary layer (ABL), Erosion, Crops

Abstract

One of the most widespread strategies for crop protection against adverse weather is the use of shelterbelts. This study analyzes, through computational fluid dynamics (CFD), the effectiveness of the protective shield provided by shelterbelts against Zonda wind in vineyards in Mendoza, Argentina. CFD simulations were carried out in OpenFOAM, comparing scenarios with and without an atmospheric boundary layer under a type-2 Zonda wind (25ms-1). In the cases without an atmospheric boundary layer, the shelterbelts predictably reduced wind speed in their zone of influence, confirming that an OP between 35% and 50% maximizes the “shelter effect.” However, when the boundary layer was included, flow structures and energy dissipation processes became significantly more variable: the shape of the protective shield was altered both in the extent and intensity of the recirculation zone, which may affect the effectiveness of crop protection. These findings allow for refining design and layout strategies of shelterbelts, improving agronomic planning in regions exposed to Zonda wind.

References

Alonso R., Bottini R., Piccoli P., y Berli F.J. Impact of climate change on argentine viticulture: As it moves south, what may be the effect of wind? En M. Gutiérrez Gamboa y M. Fourment, editores, Latin American viticulture adaptation to climate change, capítulo 12. Springer Nature Switzerland, 2024a. https://doi.org/10.1007/978-3-031-51325-1_1.

Alonso R., Muñoz F., Bottini R., Piccoli P., y Berli F.J. Effects of wind exposure and deficit irrigation on vegetative growth, yield components and berry composition of malbec and cabernet sauvignon. Plants, 13(10):1292, 2024b. http://doi.org/10.3390/plants13101292.

Dematte R.A., Gandolfo Raso E., y Huespe J. Protección de viñedos contra el viento zonda: evaluación de cortavientos forestales. Investigaciones Geográficas, (83):91–107, 2025. https://doi.org/10.14198/INGEO.27853.

Gardiner B., Berry P., y Moulia B. Review: Wind impacts on plant growth, mechanics and damage. Plant Science, 245:94–118, 2016. https://doi.org/10.1016/j.plantsci.2016.01.006.

Hargreaves D.M. y Wright N.G. On the use of the k–? model in commercial cfd software to model the neutral atmospheric boundary layer. Journal of wind engineering and industrial aerodynamics, 95(5):355–369, 2007.

Jones W.P. y Launder B.E. The production of turbulence energy and its dissipation in a developing turbulent boundary layer. International Journal of Heat and Mass Transfer, 15(2):301– 314, 1972.

Kitware, Inc. Paraview. 2023. Versión 5.11.1. Software de visualización de datos. Disponible en https://www.paraview.org/.

Norte F.A. Características del viento zonda en la región de Cuyo. Tesis de Doctorado, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, 1988.

Norte F.A. Understanding and forecasting zonda wind (andean foehn) in argentina: A review. Atmospheric and Climate Sciences, 5:163–193, 2015. https://doi.org/10.4236/acs.2015.53012.

Oberschelp G.P.J., Harrand L., Mastrandrea C.A., Salto C.S., y Flores Palenzona M.H. Cortinas forestales: rompevientos y amortiguadoras de deriva de agroquímicos. Estación Experimental Agropecuaria Concordia, INTA, 2020.

OpenCFD Ltd. OpenFOAM ®, a cfd toolbox. https://www.openfoam.com, 2024. Accessed: [13/9/2025], versión v2412.

Otero F. El viento Zonda en Cuyo, características, métodos de clasificación y pronóstico. Tesis de Doctorado, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias de la Atmósfera y los Océanos, 2018.

Patankar S.V. y Spalding D.B. A computer procedure for heat, mass and momentum transfer in three-dimensional parabolic and elliptic boundary-layer situations. Imperial College, London, 1972.

Peri P.L. Cortinas forestales cortaviento. EEA Santa Cruz, INTA, 2003.

Trimble Inc. Sketchup. 2023. Versión 2023. Software de modelado 3D. Disponible en https://www.sketchup.com/.

Wang H. y Takle E.S. Model-simulated influences of shelterbelt shape on wind-sheltering. Agricultural and Forest Meteorology, 85(1–2):49–64, 1997. https://doi.org/10.1175/1520-0450-36.6.695.

Wang J., Patruno L., Zhao G., y Tamura Y.Windbreak effectiveness of shelterbelts with different characteristic parameters and arrangements by means of cfd simulation. Agricultural and Forest Meteorology, 344:109813, 2024. https://doi.org/10.1016/j.agrformet.2023.109813.

Yang Y., Gu M., Chen S., y Jin X. New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 97(2):88–95, 2009.

Published

2025-11-30

Issue

Section

Conference Papers in MECOM 2025

Most read articles by the same author(s)