On the Prediction of Diffuse and Localized Failure Modes for High Performance Concretes
DOI:
https://doi.org/10.70567/mc.v42.ocsid8373Palavras-chave:
Concrete, high-performance, failure, diffuse, localizedResumo
High-performance concretes are cementitious composites developed for particular structural or construction needs. They can include high-strength, fiber-reinforced and ultra-high-performance concretes. Those concrete types have different compositions and mechanical properties, leading to variable failure properties under given load scenarios. The focus of this work is to explore if diffuse and localized failure modes can be mathematically predicted taking as a basis the non-linear Performance Dependent Model (PDM), that has been proved to appropriately capture failure conditions for plain concretes of variable compressive strengths. The numerical results in terms of characteristic failure modes and critical directions are compared against experimental evidences.
Referências
di Prisco M., Plizzari G., and Vandewalle L. Fibre reinforced concrete: new design perspectives. Mater Struct., 42:1261–1281, 2009. http://doi.org/10.1617/s11527-009-9529-4.
Folino P. and Etse G. Validation of the performance dependent failure criterion for concretes. ACI Materials Journal, 108(3):261–269, 2011. http://doi.org/10.14359/51682491.
Folino P. and Etse G. Performance dependent model for normal and high strength concretes. International Journal of Solids and Structures, 49(5):701–719, 2012. http://doi.org/10.1016/j.ijsolstr.2011.11.020.
Folino P., Etse G., and Will A. A performance dependent failure criterion for normal and high strength concretes. ASCE Journal of Engineering Mechanics, 135(12):1393–1409, 2009.
Folino P., Ripani M., Xargay H., and Rocca N. Comprehensive analysis of fiber reinforced concrete beams with conventional reinforcement. Engineering Structures, 202:109862, 2020. http://doi.org/10.1016/j.engstruct.2019.109862.
Hadamard J. Lecons sur la Propagation des Ondes. Librairie Scientifique A. Hermann et Fils, Paris, 1903.
Hill R. A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids, 6:239–249, 1958.
Hill R. Acceleration waves in solids. J. Mech. Phys. Solids, 10:1–16, 1962.
Naaman A. and Reinhardt H. Proposed classification of HPFRC composites based on their tensile response. Mater Struct., 39:547–555, 2006. http://doi.org/10.1617/s11527-006-9103- 2.
Soltanzadeh F., Barros J., and Santos R. High performance fiber reinforced concrete for the shear reinforcement: experimental and numerical research. Construct Build Mater., 77:94–109, 2015. http://doi.org/10.1016/j.conbuildmat.2014.12.003.
Thomas T. Plastic Flow and Fracture of Solids. Academic Press, New York, 1961.
Xargay H., Folino P., Sambataro L., and Etse G. Temperature effects on failure behavior of self-compacting high strength plain and fiber reinforced concrete. Construction and Building Materials, 165:723–734, 2018. http://doi.org/10.1016/j.conbuildmat.2017.12.137.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Associação Argentina de Mecânica Computacional

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta publicação é de acesso aberto diamante, sem custos para autores ou leitores.
Somente os artigos que foram aceitos para publicação e apresentados no congresso da AMCA serão publicados.

