Multi-Objective Optimization and Energy Simulation for the Efficient Design of Functional Modules

Authors

  • María C. Demarchi Centro de Investigación de Métodos Computacionales, CONICET-UNL & Universidad Tecnológica Nacional, Facultad Regional Santa Fe. Santa Fe, Argentina. https://orcid.org/0009-0009-0736-0256
  • Alejandro E. Albanesi Centro de Investigación de Métodos Computacionales, CONICET-UNL & Universidad Tecnológica Nacional, Facultad Regional Santa Fe. Santa Fe, Argentina. https://orcid.org/0000-0002-8315-2629
  • Federico Favre Universidad de la República, Facultad de Ingeniería, Instituto de Ingeniería Mecánica y Producción Industrial. Montevideo, Uruguay.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8279

Keywords:

Modular architecture, Energy efficiency, EnergyPlus, Genetic algorithm

Abstract

Given the current context of energy and environmental crises, the development of sustainable and efficient housing solutions becomes urgent. This work addresses the analysis and optimization of prefabricated functional modules designed for use as temporary housing or offices. Manufactured in a workshop, these modules allow for greater control over construction quality, waste management, and pollutant reduction, compared to traditional on-site construction systems. Their main advantage lies in their adaptability through the appropriate choice of dimensions and materials. In this regard, a methodology based on computational simulation of thermal and energy performance, coupled with multi-objective optimization, is proposed to minimize energy demand and maximize interior thermal comfort, allowing for the establishment of design guidelines for efficient, adaptable, and sustainable modular architecture.

References

Informe estadístico anual 2022. Informe Técnico, Ministerio de Economía de Argentina, 2022.

Alexakis K., Benekis V., Kokkinakos P., y Askounis D. Genetic algorithm-based multi-objective optimisation for energy-efficient building retrofitting: A systematic review. Energy and Buildings, 328:115216, 2025. http://doi.org/https://doi.org/10.1016/j.enbuild.2024.115216.

Barone G., Buonomano A., Forzano C., Giuzio G., Palombo A., y Russo G. A new thermal comfort model based on physiological parameters for the smart design and control of energy-efficient hvac systems. Renewable and Sustainable Energy Reviews, 173:113015, 2023. http://doi.org/https://doi.org/10.1016/j.rser.2022.113015.

Documentation E. Input Output Reference. U.S. Department of Energy, 2023.

EnergyPlus. https://energyplus.net, 2023.

Li Y., Sun J., Cui B., Li K., Dong J., Lian J., Zhao X., y Nawaz K. Multitarget control models for building thermal comfort and indoor air quality - a critical review. Results in Engineering, 24:103608, 2024. http://doi.org/https://doi.org/10.1016/j.rineng.2024.103608.

Orne M., Liddament M.W., yWilson A. Numerical Data for Air Indiltration Natural Ventilation Calculations. International Energy Agency, 1994.

ZIZI M. https://www.tingladoszizi.com.ar/modulos-funcionales/, 2025.

Published

2025-12-04