Análisis de las Densidades de Estados y Cargas Electrónicas en el Sistema Clonidina – Fullereno
DOI:
https://doi.org/10.70567/mc.v42.ocsid8232Palavras-chave:
DFT, fullereno de carbono, fármacoResumo
En este trabajo, se exploran las interacciones entre el ingrediente farmacéutico activo (API) clonidina con fullerenos basados en carbono, C30 y C36, y sus variantes dopadas con boro y nitrógeno, empleando la teoría del funcional de la densidad (DFT) para un estudio computacional detallado basado principalmente en el análisis de las densidades de estados y las cargas electrónicas. Los fullerenos C30 dopados mejoran significativamente su interacción con el fármaco en comparación con el fullereno C30 prístino. En general, las interacciones de la clonidina con C30-B son más fuertes que con C30-N, Los fullerenos C36-B2 y C36-N2 son menos reactivos que los fullerenos C30-B y C30-N. Este trabajo enfatiza el rol de la química computacional para asistir en la investigación de la química sostenible, optimizando las interacciones entre fármacos y fullerenos, allanando el camino para futuras investigaciones experimentales en este campo.
Referências
Amiraslanzadeh S. The effect of doping different heteroatoms on the interaction and adsorption abilities of fullereno. Heteroatom Chemistry, 27(1):23–31, 2016. https://doi.org/10.1002/hc.21284
Bibi S., Ur-rehman S., Khalid L., Bhatti I.A., Bhatti H.N., Iqbal J., Bai F.Q., y Zhang H.X. Investigation of the adsorption properties of gemcitabine anticancer drug with metal-doped boron nitride fullerenes as a drug-delivery carrier: a dft study. RSC Advances, 12:2873, 2022. https://doi.org/10.1039/D1RA09319C
Czelen P., Szefler B., y Skotnicka A. A computational study of the immobilization of new 5- nitroisatine derivatives with the use of C60-based functionalized nanocarriers. Symmetry, 15(1):226, 2023. https://doi.org/10.3390/sym15010226
Dodero G., Grau E.N., Roman G., Compañy A.D., y Simonetti S. Computational insights into Si-doped (10,0) SWCNT as polypill model for cardiovascular disease. Diamond and Related Materials, 124:108945, 2022. https://doi.org/10.1016/j.diamond.2022.108945
Jiang X.L., Samant S., Lesko L.J., y Schmidt S. Clinical pharmacokinetics and pharmacodynamics of clopidogrel. Clinical Pharmacokinetics, 54(2):147–166, 2015. http://doi.org/10.1007/s40262-014-0230-6.
Kumar A., Sayyed M., Sabugaa M.M., Al-Bahrani M., Sharma S., y Saadh M.J. A dft study on effective detection of ClCn gas by functionalized, decorated, and doped nanocone strategies. RSC Advances, 13(18):12554–12571, 2023. https://doi.org/10.1039/D3RA01231J
Mierzwa G., Gordon A.J., y Berski S. The electronic structure of molecules with the b-f and b-cl bond in light of the topological analysis of electron localization function: Possibility of multiple bonds? International Journal of Quantum Chemistry, 118(24):e25781, 2018. https://doi.org/10.1002/qua.25781
Momma K. y Izumi F. Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6):1272–1276, 2011. https://doi.org/10.1107/S0021889811038970
National Center for Biotechnology Information. Pubchem compound summary for cid 2803, clonidine. https://pubchem.ncbi.nlm.nih.gov/compound/Clonidine, 2024. Accessed: 2024-08-24.
Pattanaik S., Vishwkarma A., Yadav T., Shakerzadeh E., Sahu D., Chakroborty S., Tripathi P., Zereffa E., Malviya J., Barik A., et al. In silico investigation on sensing of tyramine by boron and silicon doped C60 fullerenes. Scientific Reports, 13(1):22264, 2023. https://doi.org/10.1038/s41598-023-49414-5
Sanville E., Kenny S.D., Smith R., y Henkelman G. An improved grid-based algorithm for bader charge allocation. Journal of Computational Chemistry, 28:899–908, 2007. https://doi.org/10.1002/jcc.20575
Tandon H., Chakraborty T., y Suhag V. A brief review on importance of dft in drug design. Res.Med. Eng. Stud, 39:46, 2019. http://dx.doi.org/10.31031/RMES.2019.07.000668
Tang W., Sanville E., y Henkelman G. A grid-based bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 21:084204, 2009. https://doi.org/10.1088/0953-8984/21/8/084204
Venkatesan N., Yoshimitsu J., Ito Y., Shibata N., y Takada K. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials, 26(34):7154–7163, 2005. https://doi.org/10.1016/j.biomaterials.2005.05.012
Wagner V., Dullaart A., Bock A.K., y Zweck A. The emerging nanomedicine landscape. Nature Biotechnology, 24(10):1211–1217, 2006. https://doi.org/10.1038/nbt1006-1211
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Associação Argentina de Mecânica Computacional

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta publicação é de acesso aberto diamante, sem custos para autores ou leitores.
Somente os artigos que foram aceitos para publicação e apresentados no congresso da AMCA serão publicados.

