Simplified Model of a Spinal Functional Unit to Determine Surgical Parameters

Authors

  • Lucas O. Basiuk Universidad Nacional de La Plata, Facultad de Ciencias Exactas, Instituto de Física de Líquidos y Sistemas Biológicos (IFLySiB), Grupo Mecánica Estadística de Líquidos y Materia Condensada Blanda (MELyMCB) & Universidad Tecnológica Nacional, Facultad Regional La Plata, Grupo de Materiales Granulares (GMG). La Plata, Argentina.
  • Gastón Camino-Willhuber Policlínica Gipuzkoa, Servicio de Traumatología. San Sebastian, España
  • Mariana Bendersky Universidad de Buenos Aires, Facultad de Medicina, Laboratorio de Anatomia Viviente. Ciudad Autónoma de Buenos Aires, Argentina.
  • Ariel G. Meyra Universidad Nacional de La Plata, Facultad de Ciencias Exactas, Instituto de Física de Líquidos y Sistemas Biológicos (IFLySiB), Grupo Mecánica Estadística de Líquidos y Materia Condensada Blanda (MELyMCB) & Universidad Tecnológica Nacional, Facultad Regional La Plata, Grupo de Materiales Granulares (GMG). La Plata, Argentina.
  • Ramiro M. Irastorza Universidad Nacional de La Plata, Facultad de Ciencias Exactas, Instituto de Física de Líquidos y Sistemas Biológicos (IFLySiB), Grupo Mecánica Estadística de Líquidos y Materia Condensada Blanda (MELyMCB) & Universidad Tecnológica Nacional, Facultad Regional La Plata, Grupo de Materiales Granulares (GMG). La Plata, Argentina.
  • C. Manuel Carlevaro Universidad Nacional de La Plata, Facultad de Ciencias Exactas, Instituto de Física de Líquidos y Sistemas Biológicos (IFLySiB), Grupo Mecánica Estadística de Líquidos y Materia Condensada Blanda (MELyMCB) & Universidad Tecnológica Nacional, Facultad Regional La Plata, Grupo de Materiales Granulares (GMG). La Plata, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8433

Keywords:

Toy model, Parametric toy model, Biomechanics, Percutaneous Bone Discoplasty, Computational Mechanics

Abstract

A simplified computational model of the L4-L5 functional spinal unit is presented to explore relevant parameters in minimally invasive surgeries such as percutaneous cement discoplasty. Using open-source software (Gmsh, Dolfinx, Paraview), variations in disc height and bone cement volume can be customized. The results include verification with a clinical case, estimation of injected cement volume, and analysis of pre- and postoperative stresses. This work aims to contribute to the optimization of surgical parameters.

References

Baratta I.A., Dean J.P., Dokken J.S., Habera M., Hale J.S., Richardson C.N., Rognes M.E., Scroggs M.W., Sime N., y Wells G.N. Dolfinx: The next generation fenics problem solving environment. 2023. https://doi.org/10.5281/zenodo.10447666.

Basiuk L., Camino-Willhuber G., Bendersky M., Meyra A.G., Irastorza R.M., y Manuel Carlevaro C. Biomechanical analysis of percutaneous cement discoplasty based on cement distribution. En F.E. Ballina, R. Armentano, R.C. Acevedo, y G.J. Meschino, editores, Advances in Bioengineering and Clinical Engineering, páginas 455–463. Springer Nature Switzerland, Cham, 2024. ISBN 978-3-031-61960-1. https://doi.org/10.1007/978-3-031-61960-141.

Basiuk L.O., Camino Willhuber G., Bendersky M., Meyra A.G., Irastorza R.M., y Carlevaro C.M. Evaluación de modelo mecánico de cuerpos vertebrales tratados con discoplastía. Mecánica Computacional, páginas 1073–1081, 2023.

Bellina E., Laurino M.E., Perego A., Pezzinga A., Carpenedo L., Ninarello D., y La Barbera L. Assessment of a fully-parametric thoraco-lumbar spine model generator with articulated ribcage. Journal of Biomechanics, 164:111951, 2024. ISSN 0021-9290. https://doi.org/10.1016/j.jbiomech.2024.111951.

Camino Willhuber G., Kido G., Pereira Duarte M., Estefan M., Bendersky M., Bassani J., Petracchi M., Gruenberg M., y Sola C. Percutaneous cement discoplasty for the treatment of advanced degenerative disc conditions: a case series analysis. global spine journal, 10(6):729– 734, 2020.

Caprara S., Carrillo F., Snedeker J.G., Farshad M., y Senteler M. Automated pipeline to generate anatomically accurate patient-specific biomechanical models of healthy and pathological fsus. Frontiers in Bioengineering and Biotechnology, Volume 9 - 2021, 2021. ISSN 2296-4185. https://doi.org/10.3389/fbioe.2021.636953.

Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin J.C., Pujol S., Bauer C., Jennings D., Fennessy F., Sonka M., et al. 3d slicer as an image computing platform for the quantitative imaging network. Magnetic resonance imaging, 30(9):1323–1341, 2012.

Finley S.M., Brodke D.S., Spina N.T., DeDen C.A., y Ellis B.J. Febio finite element models of the human lumbar spine. Computer Methods in Biomechanics and Biomedical Engineering, 21(6):444–452, 2018. https://doi.org/10.1080/10255842.2018.1478967. PMID: 30010415.

Geuzaine C. y Remacle J.F. Gmsh: A 3-d finite element mesh generator with built-in preand post-processing facilities. International journal for numerical methods in engineering, 79(11):1309–1331, 2009.

Kapandji A.I. y Lacomba M.T. Fisiologia articular: esquemas comentados de mecânica humana. Fisiologia articular: esquemas comentados de mecânica humana, 2006.

Lewin S., Försth P., y Persson C. Low-modulus pmma has the potential to reduce stresses on endplates after cement discoplasty. Journal of functional biomaterials, 13(1):18, 2022.

Sekuboyina A., Husseini M.E., y otros. Verse: A vertebrae labelling and segmentation benchmark for multi-detector ct images. Medical Image Analysis, 73:102166, 2021. ISSN 1361-8415. https://doi.org/10.1016/j.media.2021.102166.

Varga P., Jakab G., Bors I., Lazary A., y Szövérfi Z. Experiences with pmma cement as a stand-alone intervertebral spacer: Percutaneous cement discoplasty in the case of vacuum phenomenon within lumbar intervertebral discs. english version. Der Orthopäde, 44(Suppl 1):1–8, 2015.

Published

2025-12-07